1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_ppc.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 #define __ _masm->
  43 
  44 #ifdef PRODUCT
  45 #define BLOCK_COMMENT(str) // nothing
  46 #else
  47 #define BLOCK_COMMENT(str) __ block_comment(str)
  48 #endif
  49 
  50 #if defined(ABI_ELFv2)
  51 #define STUB_ENTRY(name) StubRoutines::name()
  52 #else
  53 #define STUB_ENTRY(name) ((FunctionDescriptor*)StubRoutines::name())->entry()
  54 #endif
  55 
  56 class StubGenerator: public StubCodeGenerator {
  57  private:
  58 
  59   // Call stubs are used to call Java from C
  60   //
  61   // Arguments:
  62   //
  63   //   R3  - call wrapper address     : address
  64   //   R4  - result                   : intptr_t*
  65   //   R5  - result type              : BasicType
  66   //   R6  - method                   : Method
  67   //   R7  - frame mgr entry point    : address
  68   //   R8  - parameter block          : intptr_t*
  69   //   R9  - parameter count in words : int
  70   //   R10 - thread                   : Thread*
  71   //
  72   address generate_call_stub(address& return_address) {
  73     // Setup a new c frame, copy java arguments, call frame manager or
  74     // native_entry, and process result.
  75 
  76     StubCodeMark mark(this, "StubRoutines", "call_stub");
  77 
  78     address start = __ function_entry();
  79 
  80     // some sanity checks
  81     assert((sizeof(frame::abi_minframe) % 16) == 0,           "unaligned");
  82     assert((sizeof(frame::abi_reg_args) % 16) == 0,           "unaligned");
  83     assert((sizeof(frame::spill_nonvolatiles) % 16) == 0,     "unaligned");
  84     assert((sizeof(frame::parent_ijava_frame_abi) % 16) == 0, "unaligned");
  85     assert((sizeof(frame::entry_frame_locals) % 16) == 0,     "unaligned");
  86 
  87     Register r_arg_call_wrapper_addr        = R3;
  88     Register r_arg_result_addr              = R4;
  89     Register r_arg_result_type              = R5;
  90     Register r_arg_method                   = R6;
  91     Register r_arg_entry                    = R7;
  92     Register r_arg_thread                   = R10;
  93 
  94     Register r_temp                         = R24;
  95     Register r_top_of_arguments_addr        = R25;
  96     Register r_entryframe_fp                = R26;
  97 
  98     {
  99       // Stack on entry to call_stub:
 100       //
 101       //      F1      [C_FRAME]
 102       //              ...
 103 
 104       Register r_arg_argument_addr          = R8;
 105       Register r_arg_argument_count         = R9;
 106       Register r_frame_alignment_in_bytes   = R27;
 107       Register r_argument_addr              = R28;
 108       Register r_argumentcopy_addr          = R29;
 109       Register r_argument_size_in_bytes     = R30;
 110       Register r_frame_size                 = R23;
 111 
 112       Label arguments_copied;
 113 
 114       // Save LR/CR to caller's C_FRAME.
 115       __ save_LR_CR(R0);
 116 
 117       // Zero extend arg_argument_count.
 118       __ clrldi(r_arg_argument_count, r_arg_argument_count, 32);
 119 
 120       // Save non-volatiles GPRs to ENTRY_FRAME (not yet pushed, but it's safe).
 121       __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 122 
 123       // Keep copy of our frame pointer (caller's SP).
 124       __ mr(r_entryframe_fp, R1_SP);
 125 
 126       BLOCK_COMMENT("Push ENTRY_FRAME including arguments");
 127       // Push ENTRY_FRAME including arguments:
 128       //
 129       //      F0      [TOP_IJAVA_FRAME_ABI]
 130       //              alignment (optional)
 131       //              [outgoing Java arguments]
 132       //              [ENTRY_FRAME_LOCALS]
 133       //      F1      [C_FRAME]
 134       //              ...
 135 
 136       // calculate frame size
 137 
 138       // unaligned size of arguments
 139       __ sldi(r_argument_size_in_bytes,
 140                   r_arg_argument_count, Interpreter::logStackElementSize);
 141       // arguments alignment (max 1 slot)
 142       // FIXME: use round_to() here
 143       __ andi_(r_frame_alignment_in_bytes, r_arg_argument_count, 1);
 144       __ sldi(r_frame_alignment_in_bytes,
 145               r_frame_alignment_in_bytes, Interpreter::logStackElementSize);
 146 
 147       // size = unaligned size of arguments + top abi's size
 148       __ addi(r_frame_size, r_argument_size_in_bytes,
 149               frame::top_ijava_frame_abi_size);
 150       // size += arguments alignment
 151       __ add(r_frame_size,
 152              r_frame_size, r_frame_alignment_in_bytes);
 153       // size += size of call_stub locals
 154       __ addi(r_frame_size,
 155               r_frame_size, frame::entry_frame_locals_size);
 156 
 157       // push ENTRY_FRAME
 158       __ push_frame(r_frame_size, r_temp);
 159 
 160       // initialize call_stub locals (step 1)
 161       __ std(r_arg_call_wrapper_addr,
 162              _entry_frame_locals_neg(call_wrapper_address), r_entryframe_fp);
 163       __ std(r_arg_result_addr,
 164              _entry_frame_locals_neg(result_address), r_entryframe_fp);
 165       __ std(r_arg_result_type,
 166              _entry_frame_locals_neg(result_type), r_entryframe_fp);
 167       // we will save arguments_tos_address later
 168 
 169 
 170       BLOCK_COMMENT("Copy Java arguments");
 171       // copy Java arguments
 172 
 173       // Calculate top_of_arguments_addr which will be R17_tos (not prepushed) later.
 174       // FIXME: why not simply use SP+frame::top_ijava_frame_size?
 175       __ addi(r_top_of_arguments_addr,
 176               R1_SP, frame::top_ijava_frame_abi_size);
 177       __ add(r_top_of_arguments_addr,
 178              r_top_of_arguments_addr, r_frame_alignment_in_bytes);
 179 
 180       // any arguments to copy?
 181       __ cmpdi(CCR0, r_arg_argument_count, 0);
 182       __ beq(CCR0, arguments_copied);
 183 
 184       // prepare loop and copy arguments in reverse order
 185       {
 186         // init CTR with arg_argument_count
 187         __ mtctr(r_arg_argument_count);
 188 
 189         // let r_argumentcopy_addr point to last outgoing Java arguments P
 190         __ mr(r_argumentcopy_addr, r_top_of_arguments_addr);
 191 
 192         // let r_argument_addr point to last incoming java argument
 193         __ add(r_argument_addr,
 194                    r_arg_argument_addr, r_argument_size_in_bytes);
 195         __ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
 196 
 197         // now loop while CTR > 0 and copy arguments
 198         {
 199           Label next_argument;
 200           __ bind(next_argument);
 201 
 202           __ ld(r_temp, 0, r_argument_addr);
 203           // argument_addr--;
 204           __ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
 205           __ std(r_temp, 0, r_argumentcopy_addr);
 206           // argumentcopy_addr++;
 207           __ addi(r_argumentcopy_addr, r_argumentcopy_addr, BytesPerWord);
 208 
 209           __ bdnz(next_argument);
 210         }
 211       }
 212 
 213       // Arguments copied, continue.
 214       __ bind(arguments_copied);
 215     }
 216 
 217     {
 218       BLOCK_COMMENT("Call frame manager or native entry.");
 219       // Call frame manager or native entry.
 220       Register r_new_arg_entry = R14;
 221       assert_different_registers(r_new_arg_entry, r_top_of_arguments_addr,
 222                                  r_arg_method, r_arg_thread);
 223 
 224       __ mr(r_new_arg_entry, r_arg_entry);
 225 
 226       // Register state on entry to frame manager / native entry:
 227       //
 228       //   tos         -  intptr_t*    sender tos (prepushed) Lesp = (SP) + copied_arguments_offset - 8
 229       //   R19_method  -  Method
 230       //   R16_thread  -  JavaThread*
 231 
 232       // Tos must point to last argument - element_size.
 233       const Register tos = R15_esp;
 234 
 235       __ addi(tos, r_top_of_arguments_addr, -Interpreter::stackElementSize);
 236 
 237       // initialize call_stub locals (step 2)
 238       // now save tos as arguments_tos_address
 239       __ std(tos, _entry_frame_locals_neg(arguments_tos_address), r_entryframe_fp);
 240 
 241       // load argument registers for call
 242       __ mr(R19_method, r_arg_method);
 243       __ mr(R16_thread, r_arg_thread);
 244       assert(tos != r_arg_method, "trashed r_arg_method");
 245       assert(tos != r_arg_thread && R19_method != r_arg_thread, "trashed r_arg_thread");
 246 
 247       // Set R15_prev_state to 0 for simplifying checks in callee.
 248       __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
 249       // Stack on entry to frame manager / native entry:
 250       //
 251       //      F0      [TOP_IJAVA_FRAME_ABI]
 252       //              alignment (optional)
 253       //              [outgoing Java arguments]
 254       //              [ENTRY_FRAME_LOCALS]
 255       //      F1      [C_FRAME]
 256       //              ...
 257       //
 258 
 259       // global toc register
 260       __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R11_scratch1);
 261       // Remember the senderSP so we interpreter can pop c2i arguments off of the stack
 262       // when called via a c2i.
 263 
 264       // Pass initial_caller_sp to framemanager.
 265       __ mr(R21_tmp1, R1_SP);
 266 
 267       // Do a light-weight C-call here, r_new_arg_entry holds the address
 268       // of the interpreter entry point (frame manager or native entry)
 269       // and save runtime-value of LR in return_address.
 270       assert(r_new_arg_entry != tos && r_new_arg_entry != R19_method && r_new_arg_entry != R16_thread,
 271              "trashed r_new_arg_entry");
 272       return_address = __ call_stub(r_new_arg_entry);
 273     }
 274 
 275     {
 276       BLOCK_COMMENT("Returned from frame manager or native entry.");
 277       // Returned from frame manager or native entry.
 278       // Now pop frame, process result, and return to caller.
 279 
 280       // Stack on exit from frame manager / native entry:
 281       //
 282       //      F0      [ABI]
 283       //              ...
 284       //              [ENTRY_FRAME_LOCALS]
 285       //      F1      [C_FRAME]
 286       //              ...
 287       //
 288       // Just pop the topmost frame ...
 289       //
 290 
 291       Label ret_is_object;
 292       Label ret_is_long;
 293       Label ret_is_float;
 294       Label ret_is_double;
 295 
 296       Register r_entryframe_fp = R30;
 297       Register r_lr            = R7_ARG5;
 298       Register r_cr            = R8_ARG6;
 299 
 300       // Reload some volatile registers which we've spilled before the call
 301       // to frame manager / native entry.
 302       // Access all locals via frame pointer, because we know nothing about
 303       // the topmost frame's size.
 304       __ ld(r_entryframe_fp, _abi(callers_sp), R1_SP);
 305       assert_different_registers(r_entryframe_fp, R3_RET, r_arg_result_addr, r_arg_result_type, r_cr, r_lr);
 306       __ ld(r_arg_result_addr,
 307             _entry_frame_locals_neg(result_address), r_entryframe_fp);
 308       __ ld(r_arg_result_type,
 309             _entry_frame_locals_neg(result_type), r_entryframe_fp);
 310       __ ld(r_cr, _abi(cr), r_entryframe_fp);
 311       __ ld(r_lr, _abi(lr), r_entryframe_fp);
 312 
 313       // pop frame and restore non-volatiles, LR and CR
 314       __ mr(R1_SP, r_entryframe_fp);
 315       __ mtcr(r_cr);
 316       __ mtlr(r_lr);
 317 
 318       // Store result depending on type. Everything that is not
 319       // T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE is treated as T_INT.
 320       __ cmpwi(CCR0, r_arg_result_type, T_OBJECT);
 321       __ cmpwi(CCR1, r_arg_result_type, T_LONG);
 322       __ cmpwi(CCR5, r_arg_result_type, T_FLOAT);
 323       __ cmpwi(CCR6, r_arg_result_type, T_DOUBLE);
 324 
 325       // restore non-volatile registers
 326       __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 327 
 328 
 329       // Stack on exit from call_stub:
 330       //
 331       //      0       [C_FRAME]
 332       //              ...
 333       //
 334       //  no call_stub frames left.
 335 
 336       // All non-volatiles have been restored at this point!!
 337       assert(R3_RET == R3, "R3_RET should be R3");
 338 
 339       __ beq(CCR0, ret_is_object);
 340       __ beq(CCR1, ret_is_long);
 341       __ beq(CCR5, ret_is_float);
 342       __ beq(CCR6, ret_is_double);
 343 
 344       // default:
 345       __ stw(R3_RET, 0, r_arg_result_addr);
 346       __ blr(); // return to caller
 347 
 348       // case T_OBJECT:
 349       __ bind(ret_is_object);
 350       __ std(R3_RET, 0, r_arg_result_addr);
 351       __ blr(); // return to caller
 352 
 353       // case T_LONG:
 354       __ bind(ret_is_long);
 355       __ std(R3_RET, 0, r_arg_result_addr);
 356       __ blr(); // return to caller
 357 
 358       // case T_FLOAT:
 359       __ bind(ret_is_float);
 360       __ stfs(F1_RET, 0, r_arg_result_addr);
 361       __ blr(); // return to caller
 362 
 363       // case T_DOUBLE:
 364       __ bind(ret_is_double);
 365       __ stfd(F1_RET, 0, r_arg_result_addr);
 366       __ blr(); // return to caller
 367     }
 368 
 369     return start;
 370   }
 371 
 372   // Return point for a Java call if there's an exception thrown in
 373   // Java code.  The exception is caught and transformed into a
 374   // pending exception stored in JavaThread that can be tested from
 375   // within the VM.
 376   //
 377   address generate_catch_exception() {
 378     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 379 
 380     address start = __ pc();
 381 
 382     // Registers alive
 383     //
 384     //  R16_thread
 385     //  R3_ARG1 - address of pending exception
 386     //  R4_ARG2 - return address in call stub
 387 
 388     const Register exception_file = R21_tmp1;
 389     const Register exception_line = R22_tmp2;
 390 
 391     __ load_const(exception_file, (void*)__FILE__);
 392     __ load_const(exception_line, (void*)__LINE__);
 393 
 394     __ std(R3_ARG1, in_bytes(JavaThread::pending_exception_offset()), R16_thread);
 395     // store into `char *'
 396     __ std(exception_file, in_bytes(JavaThread::exception_file_offset()), R16_thread);
 397     // store into `int'
 398     __ stw(exception_line, in_bytes(JavaThread::exception_line_offset()), R16_thread);
 399 
 400     // complete return to VM
 401     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
 402 
 403     __ mtlr(R4_ARG2);
 404     // continue in call stub
 405     __ blr();
 406 
 407     return start;
 408   }
 409 
 410   // Continuation point for runtime calls returning with a pending
 411   // exception.  The pending exception check happened in the runtime
 412   // or native call stub.  The pending exception in Thread is
 413   // converted into a Java-level exception.
 414   //
 415   // Read:
 416   //
 417   //   LR:     The pc the runtime library callee wants to return to.
 418   //           Since the exception occurred in the callee, the return pc
 419   //           from the point of view of Java is the exception pc.
 420   //   thread: Needed for method handles.
 421   //
 422   // Invalidate:
 423   //
 424   //   volatile registers (except below).
 425   //
 426   // Update:
 427   //
 428   //   R4_ARG2: exception
 429   //
 430   // (LR is unchanged and is live out).
 431   //
 432   address generate_forward_exception() {
 433     StubCodeMark mark(this, "StubRoutines", "forward_exception");
 434     address start = __ pc();
 435 
 436 #if !defined(PRODUCT)
 437     if (VerifyOops) {
 438       // Get pending exception oop.
 439       __ ld(R3_ARG1,
 440                 in_bytes(Thread::pending_exception_offset()),
 441                 R16_thread);
 442       // Make sure that this code is only executed if there is a pending exception.
 443       {
 444         Label L;
 445         __ cmpdi(CCR0, R3_ARG1, 0);
 446         __ bne(CCR0, L);
 447         __ stop("StubRoutines::forward exception: no pending exception (1)");
 448         __ bind(L);
 449       }
 450       __ verify_oop(R3_ARG1, "StubRoutines::forward exception: not an oop");
 451     }
 452 #endif
 453 
 454     // Save LR/CR and copy exception pc (LR) into R4_ARG2.
 455     __ save_LR_CR(R4_ARG2);
 456     __ push_frame_reg_args(0, R0);
 457     // Find exception handler.
 458     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 459                      SharedRuntime::exception_handler_for_return_address),
 460                     R16_thread,
 461                     R4_ARG2);
 462     // Copy handler's address.
 463     __ mtctr(R3_RET);
 464     __ pop_frame();
 465     __ restore_LR_CR(R0);
 466 
 467     // Set up the arguments for the exception handler:
 468     //  - R3_ARG1: exception oop
 469     //  - R4_ARG2: exception pc.
 470 
 471     // Load pending exception oop.
 472     __ ld(R3_ARG1,
 473               in_bytes(Thread::pending_exception_offset()),
 474               R16_thread);
 475 
 476     // The exception pc is the return address in the caller.
 477     // Must load it into R4_ARG2.
 478     __ mflr(R4_ARG2);
 479 
 480 #ifdef ASSERT
 481     // Make sure exception is set.
 482     {
 483       Label L;
 484       __ cmpdi(CCR0, R3_ARG1, 0);
 485       __ bne(CCR0, L);
 486       __ stop("StubRoutines::forward exception: no pending exception (2)");
 487       __ bind(L);
 488     }
 489 #endif
 490 
 491     // Clear the pending exception.
 492     __ li(R0, 0);
 493     __ std(R0,
 494                in_bytes(Thread::pending_exception_offset()),
 495                R16_thread);
 496     // Jump to exception handler.
 497     __ bctr();
 498 
 499     return start;
 500   }
 501 
 502 #undef __
 503 #define __ masm->
 504   // Continuation point for throwing of implicit exceptions that are
 505   // not handled in the current activation. Fabricates an exception
 506   // oop and initiates normal exception dispatching in this
 507   // frame. Only callee-saved registers are preserved (through the
 508   // normal register window / RegisterMap handling).  If the compiler
 509   // needs all registers to be preserved between the fault point and
 510   // the exception handler then it must assume responsibility for that
 511   // in AbstractCompiler::continuation_for_implicit_null_exception or
 512   // continuation_for_implicit_division_by_zero_exception. All other
 513   // implicit exceptions (e.g., NullPointerException or
 514   // AbstractMethodError on entry) are either at call sites or
 515   // otherwise assume that stack unwinding will be initiated, so
 516   // caller saved registers were assumed volatile in the compiler.
 517   //
 518   // Note that we generate only this stub into a RuntimeStub, because
 519   // it needs to be properly traversed and ignored during GC, so we
 520   // change the meaning of the "__" macro within this method.
 521   //
 522   // Note: the routine set_pc_not_at_call_for_caller in
 523   // SharedRuntime.cpp requires that this code be generated into a
 524   // RuntimeStub.
 525   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc,
 526                                    Register arg1 = noreg, Register arg2 = noreg) {
 527     CodeBuffer code(name, 1024 DEBUG_ONLY(+ 512), 0);
 528     MacroAssembler* masm = new MacroAssembler(&code);
 529 
 530     OopMapSet* oop_maps  = new OopMapSet();
 531     int frame_size_in_bytes = frame::abi_reg_args_size;
 532     OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
 533 
 534     address start = __ pc();
 535 
 536     __ save_LR_CR(R11_scratch1);
 537 
 538     // Push a frame.
 539     __ push_frame_reg_args(0, R11_scratch1);
 540 
 541     address frame_complete_pc = __ pc();
 542 
 543     if (restore_saved_exception_pc) {
 544       __ unimplemented("StubGenerator::throw_exception with restore_saved_exception_pc", 74);
 545     }
 546 
 547     // Note that we always have a runtime stub frame on the top of
 548     // stack by this point. Remember the offset of the instruction
 549     // whose address will be moved to R11_scratch1.
 550     address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
 551 
 552     __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
 553 
 554     __ mr(R3_ARG1, R16_thread);
 555     if (arg1 != noreg) {
 556       __ mr(R4_ARG2, arg1);
 557     }
 558     if (arg2 != noreg) {
 559       __ mr(R5_ARG3, arg2);
 560     }
 561 #if defined(ABI_ELFv2)
 562     __ call_c(runtime_entry, relocInfo::none);
 563 #else
 564     __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry), relocInfo::none);
 565 #endif
 566 
 567     // Set an oopmap for the call site.
 568     oop_maps->add_gc_map((int)(gc_map_pc - start), map);
 569 
 570     __ reset_last_Java_frame();
 571 
 572 #ifdef ASSERT
 573     // Make sure that this code is only executed if there is a pending
 574     // exception.
 575     {
 576       Label L;
 577       __ ld(R0,
 578                 in_bytes(Thread::pending_exception_offset()),
 579                 R16_thread);
 580       __ cmpdi(CCR0, R0, 0);
 581       __ bne(CCR0, L);
 582       __ stop("StubRoutines::throw_exception: no pending exception");
 583       __ bind(L);
 584     }
 585 #endif
 586 
 587     // Pop frame.
 588     __ pop_frame();
 589 
 590     __ restore_LR_CR(R11_scratch1);
 591 
 592     __ load_const(R11_scratch1, StubRoutines::forward_exception_entry());
 593     __ mtctr(R11_scratch1);
 594     __ bctr();
 595 
 596     // Create runtime stub with OopMap.
 597     RuntimeStub* stub =
 598       RuntimeStub::new_runtime_stub(name, &code,
 599                                     /*frame_complete=*/ (int)(frame_complete_pc - start),
 600                                     frame_size_in_bytes/wordSize,
 601                                     oop_maps,
 602                                     false);
 603     return stub->entry_point();
 604   }
 605 #undef __
 606 #define __ _masm->
 607 
 608   //  Generate G1 pre-write barrier for array.
 609   //
 610   //  Input:
 611   //     from     - register containing src address (only needed for spilling)
 612   //     to       - register containing starting address
 613   //     count    - register containing element count
 614   //     tmp      - scratch register
 615   //
 616   //  Kills:
 617   //     nothing
 618   //
 619   void gen_write_ref_array_pre_barrier(Register from, Register to, Register count, bool dest_uninitialized, Register Rtmp1,
 620                                        Register preserve1 = noreg, Register preserve2 = noreg) {
 621     BarrierSet* const bs = Universe::heap()->barrier_set();
 622     switch (bs->kind()) {
 623       case BarrierSet::G1SATBCTLogging:
 624         // With G1, don't generate the call if we statically know that the target in uninitialized
 625         if (!dest_uninitialized) {
 626           int spill_slots = 3;
 627           if (preserve1 != noreg) { spill_slots++; }
 628           if (preserve2 != noreg) { spill_slots++; }
 629           const int frame_size = align_size_up(frame::abi_reg_args_size + spill_slots * BytesPerWord, frame::alignment_in_bytes);
 630           Label filtered;
 631 
 632           // Is marking active?
 633           if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
 634             __ lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
 635           } else {
 636             guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
 637             __ lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
 638           }
 639           __ cmpdi(CCR0, Rtmp1, 0);
 640           __ beq(CCR0, filtered);
 641 
 642           __ save_LR_CR(R0);
 643           __ push_frame(frame_size, R0);
 644           int slot_nr = 0;
 645           __ std(from,  frame_size - (++slot_nr) * wordSize, R1_SP);
 646           __ std(to,    frame_size - (++slot_nr) * wordSize, R1_SP);
 647           __ std(count, frame_size - (++slot_nr) * wordSize, R1_SP);
 648           if (preserve1 != noreg) { __ std(preserve1, frame_size - (++slot_nr) * wordSize, R1_SP); }
 649           if (preserve2 != noreg) { __ std(preserve2, frame_size - (++slot_nr) * wordSize, R1_SP); }
 650 
 651           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), to, count);
 652 
 653           slot_nr = 0;
 654           __ ld(from,  frame_size - (++slot_nr) * wordSize, R1_SP);
 655           __ ld(to,    frame_size - (++slot_nr) * wordSize, R1_SP);
 656           __ ld(count, frame_size - (++slot_nr) * wordSize, R1_SP);
 657           if (preserve1 != noreg) { __ ld(preserve1, frame_size - (++slot_nr) * wordSize, R1_SP); }
 658           if (preserve2 != noreg) { __ ld(preserve2, frame_size - (++slot_nr) * wordSize, R1_SP); }
 659           __ addi(R1_SP, R1_SP, frame_size); // pop_frame()
 660           __ restore_LR_CR(R0);
 661 
 662           __ bind(filtered);
 663         }
 664         break;
 665       case BarrierSet::CardTableForRS:
 666       case BarrierSet::CardTableExtension:
 667       case BarrierSet::ModRef:
 668         break;
 669       default:
 670         ShouldNotReachHere();
 671     }
 672   }
 673 
 674   //  Generate CMS/G1 post-write barrier for array.
 675   //
 676   //  Input:
 677   //     addr     - register containing starting address
 678   //     count    - register containing element count
 679   //     tmp      - scratch register
 680   //
 681   //  The input registers and R0 are overwritten.
 682   //
 683   void gen_write_ref_array_post_barrier(Register addr, Register count, Register tmp, Register preserve = noreg) {
 684     BarrierSet* const bs = Universe::heap()->barrier_set();
 685 
 686     switch (bs->kind()) {
 687       case BarrierSet::G1SATBCTLogging:
 688         {
 689           int spill_slots = (preserve != noreg) ? 1 : 0;
 690           const int frame_size = align_size_up(frame::abi_reg_args_size + spill_slots * BytesPerWord, frame::alignment_in_bytes);
 691 
 692           __ save_LR_CR(R0);
 693           __ push_frame(frame_size, R0);
 694           if (preserve != noreg) { __ std(preserve, frame_size - 1 * wordSize, R1_SP); }
 695           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), addr, count);
 696           if (preserve != noreg) { __ ld(preserve, frame_size - 1 * wordSize, R1_SP); }
 697           __ addi(R1_SP, R1_SP, frame_size); // pop_frame();
 698           __ restore_LR_CR(R0);
 699         }
 700         break;
 701       case BarrierSet::CardTableForRS:
 702       case BarrierSet::CardTableExtension:
 703         {
 704           Label Lskip_loop, Lstore_loop;
 705           if (UseConcMarkSweepGC) {
 706             // TODO PPC port: contribute optimization / requires shared changes
 707             __ release();
 708           }
 709 
 710           CardTableModRefBS* const ct = barrier_set_cast<CardTableModRefBS>(bs);
 711           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 712           assert_different_registers(addr, count, tmp);
 713 
 714           __ sldi(count, count, LogBytesPerHeapOop);
 715           __ addi(count, count, -BytesPerHeapOop);
 716           __ add(count, addr, count);
 717           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
 718           __ srdi(addr, addr, CardTableModRefBS::card_shift);
 719           __ srdi(count, count, CardTableModRefBS::card_shift);
 720           __ subf(count, addr, count);
 721           assert_different_registers(R0, addr, count, tmp);
 722           __ load_const(tmp, (address)ct->byte_map_base);
 723           __ addic_(count, count, 1);
 724           __ beq(CCR0, Lskip_loop);
 725           __ li(R0, 0);
 726           __ mtctr(count);
 727           // Byte store loop
 728           __ bind(Lstore_loop);
 729           __ stbx(R0, tmp, addr);
 730           __ addi(addr, addr, 1);
 731           __ bdnz(Lstore_loop);
 732           __ bind(Lskip_loop);
 733         }
 734       break;
 735       case BarrierSet::ModRef:
 736         break;
 737       default:
 738         ShouldNotReachHere();
 739     }
 740   }
 741 
 742   // Support for void zero_words_aligned8(HeapWord* to, size_t count)
 743   //
 744   // Arguments:
 745   //   to:
 746   //   count:
 747   //
 748   // Destroys:
 749   //
 750   address generate_zero_words_aligned8() {
 751     StubCodeMark mark(this, "StubRoutines", "zero_words_aligned8");
 752 
 753     // Implemented as in ClearArray.
 754     address start = __ function_entry();
 755 
 756     Register base_ptr_reg   = R3_ARG1; // tohw (needs to be 8b aligned)
 757     Register cnt_dwords_reg = R4_ARG2; // count (in dwords)
 758     Register tmp1_reg       = R5_ARG3;
 759     Register tmp2_reg       = R6_ARG4;
 760     Register zero_reg       = R7_ARG5;
 761 
 762     // Procedure for large arrays (uses data cache block zero instruction).
 763     Label dwloop, fast, fastloop, restloop, lastdword, done;
 764     int cl_size = VM_Version::L1_data_cache_line_size();
 765     int cl_dwords = cl_size >> 3;
 766     int cl_dwordaddr_bits = exact_log2(cl_dwords);
 767     int min_dcbz = 2; // Needs to be positive, apply dcbz only to at least min_dcbz cache lines.
 768 
 769     // Clear up to 128byte boundary if long enough, dword_cnt=(16-(base>>3))%16.
 770     __ dcbtst(base_ptr_reg);                    // Indicate write access to first cache line ...
 771     __ andi(tmp2_reg, cnt_dwords_reg, 1);       // to check if number of dwords is even.
 772     __ srdi_(tmp1_reg, cnt_dwords_reg, 1);      // number of double dwords
 773     __ load_const_optimized(zero_reg, 0L);      // Use as zero register.
 774 
 775     __ cmpdi(CCR1, tmp2_reg, 0);                // cnt_dwords even?
 776     __ beq(CCR0, lastdword);                    // size <= 1
 777     __ mtctr(tmp1_reg);                         // Speculatively preload counter for rest loop (>0).
 778     __ cmpdi(CCR0, cnt_dwords_reg, (min_dcbz+1)*cl_dwords-1); // Big enough to ensure >=min_dcbz cache lines are included?
 779     __ neg(tmp1_reg, base_ptr_reg);             // bit 0..58: bogus, bit 57..60: (16-(base>>3))%16, bit 61..63: 000
 780 
 781     __ blt(CCR0, restloop);                     // Too small. (<31=(2*cl_dwords)-1 is sufficient, but bigger performs better.)
 782     __ rldicl_(tmp1_reg, tmp1_reg, 64-3, 64-cl_dwordaddr_bits); // Extract number of dwords to 128byte boundary=(16-(base>>3))%16.
 783 
 784     __ beq(CCR0, fast);                         // already 128byte aligned
 785     __ mtctr(tmp1_reg);                         // Set ctr to hit 128byte boundary (0<ctr<cnt).
 786     __ subf(cnt_dwords_reg, tmp1_reg, cnt_dwords_reg); // rest (>0 since size>=256-8)
 787 
 788     // Clear in first cache line dword-by-dword if not already 128byte aligned.
 789     __ bind(dwloop);
 790       __ std(zero_reg, 0, base_ptr_reg);        // Clear 8byte aligned block.
 791       __ addi(base_ptr_reg, base_ptr_reg, 8);
 792     __ bdnz(dwloop);
 793 
 794     // clear 128byte blocks
 795     __ bind(fast);
 796     __ srdi(tmp1_reg, cnt_dwords_reg, cl_dwordaddr_bits); // loop count for 128byte loop (>0 since size>=256-8)
 797     __ andi(tmp2_reg, cnt_dwords_reg, 1);       // to check if rest even
 798 
 799     __ mtctr(tmp1_reg);                         // load counter
 800     __ cmpdi(CCR1, tmp2_reg, 0);                // rest even?
 801     __ rldicl_(tmp1_reg, cnt_dwords_reg, 63, 65-cl_dwordaddr_bits); // rest in double dwords
 802 
 803     __ bind(fastloop);
 804       __ dcbz(base_ptr_reg);                    // Clear 128byte aligned block.
 805       __ addi(base_ptr_reg, base_ptr_reg, cl_size);
 806     __ bdnz(fastloop);
 807 
 808     //__ dcbtst(base_ptr_reg);                  // Indicate write access to last cache line.
 809     __ beq(CCR0, lastdword);                    // rest<=1
 810     __ mtctr(tmp1_reg);                         // load counter
 811 
 812     // Clear rest.
 813     __ bind(restloop);
 814       __ std(zero_reg, 0, base_ptr_reg);        // Clear 8byte aligned block.
 815       __ std(zero_reg, 8, base_ptr_reg);        // Clear 8byte aligned block.
 816       __ addi(base_ptr_reg, base_ptr_reg, 16);
 817     __ bdnz(restloop);
 818 
 819     __ bind(lastdword);
 820     __ beq(CCR1, done);
 821     __ std(zero_reg, 0, base_ptr_reg);
 822     __ bind(done);
 823     __ blr();                                   // return
 824 
 825     return start;
 826   }
 827 
 828 #if !defined(PRODUCT)
 829   // Wrapper which calls oopDesc::is_oop_or_null()
 830   // Only called by MacroAssembler::verify_oop
 831   static void verify_oop_helper(const char* message, oop o) {
 832     if (!o->is_oop_or_null()) {
 833       fatal("%s", message);
 834     }
 835     ++ StubRoutines::_verify_oop_count;
 836   }
 837 #endif
 838 
 839   // Return address of code to be called from code generated by
 840   // MacroAssembler::verify_oop.
 841   //
 842   // Don't generate, rather use C++ code.
 843   address generate_verify_oop() {
 844     // this is actually a `FunctionDescriptor*'.
 845     address start = 0;
 846 
 847 #if !defined(PRODUCT)
 848     start = CAST_FROM_FN_PTR(address, verify_oop_helper);
 849 #endif
 850 
 851     return start;
 852   }
 853 
 854   // Fairer handling of safepoints for native methods.
 855   //
 856   // Generate code which reads from the polling page. This special handling is needed as the
 857   // linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults in 64bit mode
 858   // (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6), especially when we try
 859   // to read from the safepoint polling page.
 860   address generate_load_from_poll() {
 861     StubCodeMark mark(this, "StubRoutines", "generate_load_from_poll");
 862     address start = __ function_entry();
 863     __ unimplemented("StubRoutines::verify_oop", 95);  // TODO PPC port
 864     return start;
 865   }
 866 
 867   // -XX:+OptimizeFill : convert fill/copy loops into intrinsic
 868   //
 869   // The code is implemented(ported from sparc) as we believe it benefits JVM98, however
 870   // tracing(-XX:+TraceOptimizeFill) shows the intrinsic replacement doesn't happen at all!
 871   //
 872   // Source code in function is_range_check_if() shows that OptimizeFill relaxed the condition
 873   // for turning on loop predication optimization, and hence the behavior of "array range check"
 874   // and "loop invariant check" could be influenced, which potentially boosted JVM98.
 875   //
 876   // Generate stub for disjoint short fill. If "aligned" is true, the
 877   // "to" address is assumed to be heapword aligned.
 878   //
 879   // Arguments for generated stub:
 880   //   to:    R3_ARG1
 881   //   value: R4_ARG2
 882   //   count: R5_ARG3 treated as signed
 883   //
 884   address generate_fill(BasicType t, bool aligned, const char* name) {
 885     StubCodeMark mark(this, "StubRoutines", name);
 886     address start = __ function_entry();
 887 
 888     const Register to    = R3_ARG1;   // source array address
 889     const Register value = R4_ARG2;   // fill value
 890     const Register count = R5_ARG3;   // elements count
 891     const Register temp  = R6_ARG4;   // temp register
 892 
 893     //assert_clean_int(count, O3);    // Make sure 'count' is clean int.
 894 
 895     Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 896     Label L_fill_2_bytes, L_fill_4_bytes, L_fill_elements, L_fill_32_bytes;
 897 
 898     int shift = -1;
 899     switch (t) {
 900        case T_BYTE:
 901         shift = 2;
 902         // Clone bytes (zero extend not needed because store instructions below ignore high order bytes).
 903         __ rldimi(value, value, 8, 48);     // 8 bit -> 16 bit
 904         __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
 905         __ blt(CCR0, L_fill_elements);
 906         __ rldimi(value, value, 16, 32);    // 16 bit -> 32 bit
 907         break;
 908        case T_SHORT:
 909         shift = 1;
 910         // Clone bytes (zero extend not needed because store instructions below ignore high order bytes).
 911         __ rldimi(value, value, 16, 32);    // 16 bit -> 32 bit
 912         __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
 913         __ blt(CCR0, L_fill_elements);
 914         break;
 915       case T_INT:
 916         shift = 0;
 917         __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
 918         __ blt(CCR0, L_fill_4_bytes);
 919         break;
 920       default: ShouldNotReachHere();
 921     }
 922 
 923     if (!aligned && (t == T_BYTE || t == T_SHORT)) {
 924       // Align source address at 4 bytes address boundary.
 925       if (t == T_BYTE) {
 926         // One byte misalignment happens only for byte arrays.
 927         __ andi_(temp, to, 1);
 928         __ beq(CCR0, L_skip_align1);
 929         __ stb(value, 0, to);
 930         __ addi(to, to, 1);
 931         __ addi(count, count, -1);
 932         __ bind(L_skip_align1);
 933       }
 934       // Two bytes misalignment happens only for byte and short (char) arrays.
 935       __ andi_(temp, to, 2);
 936       __ beq(CCR0, L_skip_align2);
 937       __ sth(value, 0, to);
 938       __ addi(to, to, 2);
 939       __ addi(count, count, -(1 << (shift - 1)));
 940       __ bind(L_skip_align2);
 941     }
 942 
 943     if (!aligned) {
 944       // Align to 8 bytes, we know we are 4 byte aligned to start.
 945       __ andi_(temp, to, 7);
 946       __ beq(CCR0, L_fill_32_bytes);
 947       __ stw(value, 0, to);
 948       __ addi(to, to, 4);
 949       __ addi(count, count, -(1 << shift));
 950       __ bind(L_fill_32_bytes);
 951     }
 952 
 953     __ li(temp, 8<<shift);                  // Prepare for 32 byte loop.
 954     // Clone bytes int->long as above.
 955     __ rldimi(value, value, 32, 0);         // 32 bit -> 64 bit
 956 
 957     Label L_check_fill_8_bytes;
 958     // Fill 32-byte chunks.
 959     __ subf_(count, temp, count);
 960     __ blt(CCR0, L_check_fill_8_bytes);
 961 
 962     Label L_fill_32_bytes_loop;
 963     __ align(32);
 964     __ bind(L_fill_32_bytes_loop);
 965 
 966     __ std(value, 0, to);
 967     __ std(value, 8, to);
 968     __ subf_(count, temp, count);           // Update count.
 969     __ std(value, 16, to);
 970     __ std(value, 24, to);
 971 
 972     __ addi(to, to, 32);
 973     __ bge(CCR0, L_fill_32_bytes_loop);
 974 
 975     __ bind(L_check_fill_8_bytes);
 976     __ add_(count, temp, count);
 977     __ beq(CCR0, L_exit);
 978     __ addic_(count, count, -(2 << shift));
 979     __ blt(CCR0, L_fill_4_bytes);
 980 
 981     //
 982     // Length is too short, just fill 8 bytes at a time.
 983     //
 984     Label L_fill_8_bytes_loop;
 985     __ bind(L_fill_8_bytes_loop);
 986     __ std(value, 0, to);
 987     __ addic_(count, count, -(2 << shift));
 988     __ addi(to, to, 8);
 989     __ bge(CCR0, L_fill_8_bytes_loop);
 990 
 991     // Fill trailing 4 bytes.
 992     __ bind(L_fill_4_bytes);
 993     __ andi_(temp, count, 1<<shift);
 994     __ beq(CCR0, L_fill_2_bytes);
 995 
 996     __ stw(value, 0, to);
 997     if (t == T_BYTE || t == T_SHORT) {
 998       __ addi(to, to, 4);
 999       // Fill trailing 2 bytes.
1000       __ bind(L_fill_2_bytes);
1001       __ andi_(temp, count, 1<<(shift-1));
1002       __ beq(CCR0, L_fill_byte);
1003       __ sth(value, 0, to);
1004       if (t == T_BYTE) {
1005         __ addi(to, to, 2);
1006         // Fill trailing byte.
1007         __ bind(L_fill_byte);
1008         __ andi_(count, count, 1);
1009         __ beq(CCR0, L_exit);
1010         __ stb(value, 0, to);
1011       } else {
1012         __ bind(L_fill_byte);
1013       }
1014     } else {
1015       __ bind(L_fill_2_bytes);
1016     }
1017     __ bind(L_exit);
1018     __ blr();
1019 
1020     // Handle copies less than 8 bytes. Int is handled elsewhere.
1021     if (t == T_BYTE) {
1022       __ bind(L_fill_elements);
1023       Label L_fill_2, L_fill_4;
1024       __ andi_(temp, count, 1);
1025       __ beq(CCR0, L_fill_2);
1026       __ stb(value, 0, to);
1027       __ addi(to, to, 1);
1028       __ bind(L_fill_2);
1029       __ andi_(temp, count, 2);
1030       __ beq(CCR0, L_fill_4);
1031       __ stb(value, 0, to);
1032       __ stb(value, 0, to);
1033       __ addi(to, to, 2);
1034       __ bind(L_fill_4);
1035       __ andi_(temp, count, 4);
1036       __ beq(CCR0, L_exit);
1037       __ stb(value, 0, to);
1038       __ stb(value, 1, to);
1039       __ stb(value, 2, to);
1040       __ stb(value, 3, to);
1041       __ blr();
1042     }
1043 
1044     if (t == T_SHORT) {
1045       Label L_fill_2;
1046       __ bind(L_fill_elements);
1047       __ andi_(temp, count, 1);
1048       __ beq(CCR0, L_fill_2);
1049       __ sth(value, 0, to);
1050       __ addi(to, to, 2);
1051       __ bind(L_fill_2);
1052       __ andi_(temp, count, 2);
1053       __ beq(CCR0, L_exit);
1054       __ sth(value, 0, to);
1055       __ sth(value, 2, to);
1056       __ blr();
1057     }
1058     return start;
1059   }
1060 
1061   inline void assert_positive_int(Register count) {
1062 #ifdef ASSERT
1063     __ srdi_(R0, count, 31);
1064     __ asm_assert_eq("missing zero extend", 0xAFFE);
1065 #endif
1066   }
1067 
1068   // Generate overlap test for array copy stubs.
1069   //
1070   // Input:
1071   //   R3_ARG1    -  from
1072   //   R4_ARG2    -  to
1073   //   R5_ARG3    -  element count
1074   //
1075   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
1076     Register tmp1 = R6_ARG4;
1077     Register tmp2 = R7_ARG5;
1078 
1079     assert_positive_int(R5_ARG3);
1080 
1081     __ subf(tmp1, R3_ARG1, R4_ARG2); // distance in bytes
1082     __ sldi(tmp2, R5_ARG3, log2_elem_size); // size in bytes
1083     __ cmpld(CCR0, R3_ARG1, R4_ARG2); // Use unsigned comparison!
1084     __ cmpld(CCR1, tmp1, tmp2);
1085     __ crnand(CCR0, Assembler::less, CCR1, Assembler::less);
1086     // Overlaps if Src before dst and distance smaller than size.
1087     // Branch to forward copy routine otherwise (within range of 32kB).
1088     __ bc(Assembler::bcondCRbiIs1, Assembler::bi0(CCR0, Assembler::less), no_overlap_target);
1089 
1090     // need to copy backwards
1091   }
1092 
1093   // The guideline in the implementations of generate_disjoint_xxx_copy
1094   // (xxx=byte,short,int,long,oop) is to copy as many elements as possible with
1095   // single instructions, but to avoid alignment interrupts (see subsequent
1096   // comment). Furthermore, we try to minimize misaligned access, even
1097   // though they cause no alignment interrupt.
1098   //
1099   // In Big-Endian mode, the PowerPC architecture requires implementations to
1100   // handle automatically misaligned integer halfword and word accesses,
1101   // word-aligned integer doubleword accesses, and word-aligned floating-point
1102   // accesses. Other accesses may or may not generate an Alignment interrupt
1103   // depending on the implementation.
1104   // Alignment interrupt handling may require on the order of hundreds of cycles,
1105   // so every effort should be made to avoid misaligned memory values.
1106   //
1107   //
1108   // Generate stub for disjoint byte copy.  If "aligned" is true, the
1109   // "from" and "to" addresses are assumed to be heapword aligned.
1110   //
1111   // Arguments for generated stub:
1112   //      from:  R3_ARG1
1113   //      to:    R4_ARG2
1114   //      count: R5_ARG3 treated as signed
1115   //
1116   address generate_disjoint_byte_copy(bool aligned, const char * name) {
1117     StubCodeMark mark(this, "StubRoutines", name);
1118     address start = __ function_entry();
1119     assert_positive_int(R5_ARG3);
1120 
1121     Register tmp1 = R6_ARG4;
1122     Register tmp2 = R7_ARG5;
1123     Register tmp3 = R8_ARG6;
1124     Register tmp4 = R9_ARG7;
1125 
1126     VectorSRegister tmp_vsr1  = VSR1;
1127     VectorSRegister tmp_vsr2  = VSR2;
1128 
1129     Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9, l_10;
1130 
1131     // Don't try anything fancy if arrays don't have many elements.
1132     __ li(tmp3, 0);
1133     __ cmpwi(CCR0, R5_ARG3, 17);
1134     __ ble(CCR0, l_6); // copy 4 at a time
1135 
1136     if (!aligned) {
1137       __ xorr(tmp1, R3_ARG1, R4_ARG2);
1138       __ andi_(tmp1, tmp1, 3);
1139       __ bne(CCR0, l_6); // If arrays don't have the same alignment mod 4, do 4 element copy.
1140 
1141       // Copy elements if necessary to align to 4 bytes.
1142       __ neg(tmp1, R3_ARG1); // Compute distance to alignment boundary.
1143       __ andi_(tmp1, tmp1, 3);
1144       __ beq(CCR0, l_2);
1145 
1146       __ subf(R5_ARG3, tmp1, R5_ARG3);
1147       __ bind(l_9);
1148       __ lbz(tmp2, 0, R3_ARG1);
1149       __ addic_(tmp1, tmp1, -1);
1150       __ stb(tmp2, 0, R4_ARG2);
1151       __ addi(R3_ARG1, R3_ARG1, 1);
1152       __ addi(R4_ARG2, R4_ARG2, 1);
1153       __ bne(CCR0, l_9);
1154 
1155       __ bind(l_2);
1156     }
1157 
1158     // copy 8 elements at a time
1159     __ xorr(tmp2, R3_ARG1, R4_ARG2); // skip if src & dest have differing alignment mod 8
1160     __ andi_(tmp1, tmp2, 7);
1161     __ bne(CCR0, l_7); // not same alignment -> to or from is aligned -> copy 8
1162 
1163     // copy a 2-element word if necessary to align to 8 bytes
1164     __ andi_(R0, R3_ARG1, 7);
1165     __ beq(CCR0, l_7);
1166 
1167     __ lwzx(tmp2, R3_ARG1, tmp3);
1168     __ addi(R5_ARG3, R5_ARG3, -4);
1169     __ stwx(tmp2, R4_ARG2, tmp3);
1170     { // FasterArrayCopy
1171       __ addi(R3_ARG1, R3_ARG1, 4);
1172       __ addi(R4_ARG2, R4_ARG2, 4);
1173     }
1174     __ bind(l_7);
1175 
1176     { // FasterArrayCopy
1177       __ cmpwi(CCR0, R5_ARG3, 31);
1178       __ ble(CCR0, l_6); // copy 2 at a time if less than 32 elements remain
1179 
1180       __ srdi(tmp1, R5_ARG3, 5);
1181       __ andi_(R5_ARG3, R5_ARG3, 31);
1182       __ mtctr(tmp1);
1183 
1184      if (!VM_Version::has_vsx()) {
1185 
1186       __ bind(l_8);
1187       // Use unrolled version for mass copying (copy 32 elements a time)
1188       // Load feeding store gets zero latency on Power6, however not on Power5.
1189       // Therefore, the following sequence is made for the good of both.
1190       __ ld(tmp1, 0, R3_ARG1);
1191       __ ld(tmp2, 8, R3_ARG1);
1192       __ ld(tmp3, 16, R3_ARG1);
1193       __ ld(tmp4, 24, R3_ARG1);
1194       __ std(tmp1, 0, R4_ARG2);
1195       __ std(tmp2, 8, R4_ARG2);
1196       __ std(tmp3, 16, R4_ARG2);
1197       __ std(tmp4, 24, R4_ARG2);
1198       __ addi(R3_ARG1, R3_ARG1, 32);
1199       __ addi(R4_ARG2, R4_ARG2, 32);
1200       __ bdnz(l_8);
1201 
1202     } else { // Processor supports VSX, so use it to mass copy.
1203 
1204       // Prefetch the data into the L2 cache.
1205       __ dcbt(R3_ARG1, 0);
1206 
1207       // If supported set DSCR pre-fetch to deepest.
1208       if (VM_Version::has_mfdscr()) {
1209         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1210         __ mtdscr(tmp2);
1211       }
1212 
1213       __ li(tmp1, 16);
1214 
1215       // Backbranch target aligned to 32-byte. Not 16-byte align as
1216       // loop contains < 8 instructions that fit inside a single
1217       // i-cache sector.
1218       __ align(32);
1219 
1220       __ bind(l_10);
1221       // Use loop with VSX load/store instructions to
1222       // copy 32 elements a time.
1223       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1224       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1225       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src + 16
1226       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16
1227       __ addi(R3_ARG1, R3_ARG1, 32);       // Update src+=32
1228       __ addi(R4_ARG2, R4_ARG2, 32);       // Update dsc+=32
1229       __ bdnz(l_10);                       // Dec CTR and loop if not zero.
1230 
1231       // Restore DSCR pre-fetch value.
1232       if (VM_Version::has_mfdscr()) {
1233         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1234         __ mtdscr(tmp2);
1235       }
1236 
1237     } // VSX
1238    } // FasterArrayCopy
1239 
1240     __ bind(l_6);
1241 
1242     // copy 4 elements at a time
1243     __ cmpwi(CCR0, R5_ARG3, 4);
1244     __ blt(CCR0, l_1);
1245     __ srdi(tmp1, R5_ARG3, 2);
1246     __ mtctr(tmp1); // is > 0
1247     __ andi_(R5_ARG3, R5_ARG3, 3);
1248 
1249     { // FasterArrayCopy
1250       __ addi(R3_ARG1, R3_ARG1, -4);
1251       __ addi(R4_ARG2, R4_ARG2, -4);
1252       __ bind(l_3);
1253       __ lwzu(tmp2, 4, R3_ARG1);
1254       __ stwu(tmp2, 4, R4_ARG2);
1255       __ bdnz(l_3);
1256       __ addi(R3_ARG1, R3_ARG1, 4);
1257       __ addi(R4_ARG2, R4_ARG2, 4);
1258     }
1259 
1260     // do single element copy
1261     __ bind(l_1);
1262     __ cmpwi(CCR0, R5_ARG3, 0);
1263     __ beq(CCR0, l_4);
1264 
1265     { // FasterArrayCopy
1266       __ mtctr(R5_ARG3);
1267       __ addi(R3_ARG1, R3_ARG1, -1);
1268       __ addi(R4_ARG2, R4_ARG2, -1);
1269 
1270       __ bind(l_5);
1271       __ lbzu(tmp2, 1, R3_ARG1);
1272       __ stbu(tmp2, 1, R4_ARG2);
1273       __ bdnz(l_5);
1274     }
1275 
1276     __ bind(l_4);
1277     __ li(R3_RET, 0); // return 0
1278     __ blr();
1279 
1280     return start;
1281   }
1282 
1283   // Generate stub for conjoint byte copy.  If "aligned" is true, the
1284   // "from" and "to" addresses are assumed to be heapword aligned.
1285   //
1286   // Arguments for generated stub:
1287   //      from:  R3_ARG1
1288   //      to:    R4_ARG2
1289   //      count: R5_ARG3 treated as signed
1290   //
1291   address generate_conjoint_byte_copy(bool aligned, const char * name) {
1292     StubCodeMark mark(this, "StubRoutines", name);
1293     address start = __ function_entry();
1294     assert_positive_int(R5_ARG3);
1295 
1296     Register tmp1 = R6_ARG4;
1297     Register tmp2 = R7_ARG5;
1298     Register tmp3 = R8_ARG6;
1299 
1300     address nooverlap_target = aligned ?
1301       STUB_ENTRY(arrayof_jbyte_disjoint_arraycopy) :
1302       STUB_ENTRY(jbyte_disjoint_arraycopy);
1303 
1304     array_overlap_test(nooverlap_target, 0);
1305     // Do reverse copy. We assume the case of actual overlap is rare enough
1306     // that we don't have to optimize it.
1307     Label l_1, l_2;
1308 
1309     __ b(l_2);
1310     __ bind(l_1);
1311     __ stbx(tmp1, R4_ARG2, R5_ARG3);
1312     __ bind(l_2);
1313     __ addic_(R5_ARG3, R5_ARG3, -1);
1314     __ lbzx(tmp1, R3_ARG1, R5_ARG3);
1315     __ bge(CCR0, l_1);
1316 
1317     __ li(R3_RET, 0); // return 0
1318     __ blr();
1319 
1320     return start;
1321   }
1322 
1323   // Generate stub for disjoint short copy.  If "aligned" is true, the
1324   // "from" and "to" addresses are assumed to be heapword aligned.
1325   //
1326   // Arguments for generated stub:
1327   //      from:  R3_ARG1
1328   //      to:    R4_ARG2
1329   //  elm.count: R5_ARG3 treated as signed
1330   //
1331   // Strategy for aligned==true:
1332   //
1333   //  If length <= 9:
1334   //     1. copy 2 elements at a time (l_6)
1335   //     2. copy last element if original element count was odd (l_1)
1336   //
1337   //  If length > 9:
1338   //     1. copy 4 elements at a time until less than 4 elements are left (l_7)
1339   //     2. copy 2 elements at a time until less than 2 elements are left (l_6)
1340   //     3. copy last element if one was left in step 2. (l_1)
1341   //
1342   //
1343   // Strategy for aligned==false:
1344   //
1345   //  If length <= 9: same as aligned==true case, but NOTE: load/stores
1346   //                  can be unaligned (see comment below)
1347   //
1348   //  If length > 9:
1349   //     1. continue with step 6. if the alignment of from and to mod 4
1350   //        is different.
1351   //     2. align from and to to 4 bytes by copying 1 element if necessary
1352   //     3. at l_2 from and to are 4 byte aligned; continue with
1353   //        5. if they cannot be aligned to 8 bytes because they have
1354   //        got different alignment mod 8.
1355   //     4. at this point we know that both, from and to, have the same
1356   //        alignment mod 8, now copy one element if necessary to get
1357   //        8 byte alignment of from and to.
1358   //     5. copy 4 elements at a time until less than 4 elements are
1359   //        left; depending on step 3. all load/stores are aligned or
1360   //        either all loads or all stores are unaligned.
1361   //     6. copy 2 elements at a time until less than 2 elements are
1362   //        left (l_6); arriving here from step 1., there is a chance
1363   //        that all accesses are unaligned.
1364   //     7. copy last element if one was left in step 6. (l_1)
1365   //
1366   //  There are unaligned data accesses using integer load/store
1367   //  instructions in this stub. POWER allows such accesses.
1368   //
1369   //  According to the manuals (PowerISA_V2.06_PUBLIC, Book II,
1370   //  Chapter 2: Effect of Operand Placement on Performance) unaligned
1371   //  integer load/stores have good performance. Only unaligned
1372   //  floating point load/stores can have poor performance.
1373   //
1374   //  TODO:
1375   //
1376   //  1. check if aligning the backbranch target of loops is beneficial
1377   //
1378   address generate_disjoint_short_copy(bool aligned, const char * name) {
1379     StubCodeMark mark(this, "StubRoutines", name);
1380 
1381     Register tmp1 = R6_ARG4;
1382     Register tmp2 = R7_ARG5;
1383     Register tmp3 = R8_ARG6;
1384     Register tmp4 = R9_ARG7;
1385 
1386     VectorSRegister tmp_vsr1  = VSR1;
1387     VectorSRegister tmp_vsr2  = VSR2;
1388 
1389     address start = __ function_entry();
1390     assert_positive_int(R5_ARG3);
1391 
1392     Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9;
1393 
1394     // don't try anything fancy if arrays don't have many elements
1395     __ li(tmp3, 0);
1396     __ cmpwi(CCR0, R5_ARG3, 9);
1397     __ ble(CCR0, l_6); // copy 2 at a time
1398 
1399     if (!aligned) {
1400       __ xorr(tmp1, R3_ARG1, R4_ARG2);
1401       __ andi_(tmp1, tmp1, 3);
1402       __ bne(CCR0, l_6); // if arrays don't have the same alignment mod 4, do 2 element copy
1403 
1404       // At this point it is guaranteed that both, from and to have the same alignment mod 4.
1405 
1406       // Copy 1 element if necessary to align to 4 bytes.
1407       __ andi_(tmp1, R3_ARG1, 3);
1408       __ beq(CCR0, l_2);
1409 
1410       __ lhz(tmp2, 0, R3_ARG1);
1411       __ addi(R3_ARG1, R3_ARG1, 2);
1412       __ sth(tmp2, 0, R4_ARG2);
1413       __ addi(R4_ARG2, R4_ARG2, 2);
1414       __ addi(R5_ARG3, R5_ARG3, -1);
1415       __ bind(l_2);
1416 
1417       // At this point the positions of both, from and to, are at least 4 byte aligned.
1418 
1419       // Copy 4 elements at a time.
1420       // Align to 8 bytes, but only if both, from and to, have same alignment mod 8.
1421       __ xorr(tmp2, R3_ARG1, R4_ARG2);
1422       __ andi_(tmp1, tmp2, 7);
1423       __ bne(CCR0, l_7); // not same alignment mod 8 -> copy 4, either from or to will be unaligned
1424 
1425       // Copy a 2-element word if necessary to align to 8 bytes.
1426       __ andi_(R0, R3_ARG1, 7);
1427       __ beq(CCR0, l_7);
1428 
1429       __ lwzx(tmp2, R3_ARG1, tmp3);
1430       __ addi(R5_ARG3, R5_ARG3, -2);
1431       __ stwx(tmp2, R4_ARG2, tmp3);
1432       { // FasterArrayCopy
1433         __ addi(R3_ARG1, R3_ARG1, 4);
1434         __ addi(R4_ARG2, R4_ARG2, 4);
1435       }
1436     }
1437 
1438     __ bind(l_7);
1439 
1440     // Copy 4 elements at a time; either the loads or the stores can
1441     // be unaligned if aligned == false.
1442 
1443     { // FasterArrayCopy
1444       __ cmpwi(CCR0, R5_ARG3, 15);
1445       __ ble(CCR0, l_6); // copy 2 at a time if less than 16 elements remain
1446 
1447       __ srdi(tmp1, R5_ARG3, 4);
1448       __ andi_(R5_ARG3, R5_ARG3, 15);
1449       __ mtctr(tmp1);
1450 
1451       if (!VM_Version::has_vsx()) {
1452 
1453         __ bind(l_8);
1454         // Use unrolled version for mass copying (copy 16 elements a time).
1455         // Load feeding store gets zero latency on Power6, however not on Power5.
1456         // Therefore, the following sequence is made for the good of both.
1457         __ ld(tmp1, 0, R3_ARG1);
1458         __ ld(tmp2, 8, R3_ARG1);
1459         __ ld(tmp3, 16, R3_ARG1);
1460         __ ld(tmp4, 24, R3_ARG1);
1461         __ std(tmp1, 0, R4_ARG2);
1462         __ std(tmp2, 8, R4_ARG2);
1463         __ std(tmp3, 16, R4_ARG2);
1464         __ std(tmp4, 24, R4_ARG2);
1465         __ addi(R3_ARG1, R3_ARG1, 32);
1466         __ addi(R4_ARG2, R4_ARG2, 32);
1467         __ bdnz(l_8);
1468 
1469       } else { // Processor supports VSX, so use it to mass copy.
1470 
1471         // Prefetch src data into L2 cache.
1472         __ dcbt(R3_ARG1, 0);
1473 
1474         // If supported set DSCR pre-fetch to deepest.
1475         if (VM_Version::has_mfdscr()) {
1476           __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1477           __ mtdscr(tmp2);
1478         }
1479         __ li(tmp1, 16);
1480 
1481         // Backbranch target aligned to 32-byte. It's not aligned 16-byte
1482         // as loop contains < 8 instructions that fit inside a single
1483         // i-cache sector.
1484         __ align(32);
1485 
1486         __ bind(l_9);
1487         // Use loop with VSX load/store instructions to
1488         // copy 16 elements a time.
1489         __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load from src.
1490         __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst.
1491         __ lxvd2x(tmp_vsr2, R3_ARG1, tmp1);  // Load from src + 16.
1492         __ stxvd2x(tmp_vsr2, R4_ARG2, tmp1); // Store to dst + 16.
1493         __ addi(R3_ARG1, R3_ARG1, 32);       // Update src+=32.
1494         __ addi(R4_ARG2, R4_ARG2, 32);       // Update dsc+=32.
1495         __ bdnz(l_9);                        // Dec CTR and loop if not zero.
1496 
1497         // Restore DSCR pre-fetch value.
1498         if (VM_Version::has_mfdscr()) {
1499           __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1500           __ mtdscr(tmp2);
1501         }
1502 
1503       }
1504     } // FasterArrayCopy
1505     __ bind(l_6);
1506 
1507     // copy 2 elements at a time
1508     { // FasterArrayCopy
1509       __ cmpwi(CCR0, R5_ARG3, 2);
1510       __ blt(CCR0, l_1);
1511       __ srdi(tmp1, R5_ARG3, 1);
1512       __ andi_(R5_ARG3, R5_ARG3, 1);
1513 
1514       __ addi(R3_ARG1, R3_ARG1, -4);
1515       __ addi(R4_ARG2, R4_ARG2, -4);
1516       __ mtctr(tmp1);
1517 
1518       __ bind(l_3);
1519       __ lwzu(tmp2, 4, R3_ARG1);
1520       __ stwu(tmp2, 4, R4_ARG2);
1521       __ bdnz(l_3);
1522 
1523       __ addi(R3_ARG1, R3_ARG1, 4);
1524       __ addi(R4_ARG2, R4_ARG2, 4);
1525     }
1526 
1527     // do single element copy
1528     __ bind(l_1);
1529     __ cmpwi(CCR0, R5_ARG3, 0);
1530     __ beq(CCR0, l_4);
1531 
1532     { // FasterArrayCopy
1533       __ mtctr(R5_ARG3);
1534       __ addi(R3_ARG1, R3_ARG1, -2);
1535       __ addi(R4_ARG2, R4_ARG2, -2);
1536 
1537       __ bind(l_5);
1538       __ lhzu(tmp2, 2, R3_ARG1);
1539       __ sthu(tmp2, 2, R4_ARG2);
1540       __ bdnz(l_5);
1541     }
1542     __ bind(l_4);
1543     __ li(R3_RET, 0); // return 0
1544     __ blr();
1545 
1546     return start;
1547   }
1548 
1549   // Generate stub for conjoint short copy.  If "aligned" is true, the
1550   // "from" and "to" addresses are assumed to be heapword aligned.
1551   //
1552   // Arguments for generated stub:
1553   //      from:  R3_ARG1
1554   //      to:    R4_ARG2
1555   //      count: R5_ARG3 treated as signed
1556   //
1557   address generate_conjoint_short_copy(bool aligned, const char * name) {
1558     StubCodeMark mark(this, "StubRoutines", name);
1559     address start = __ function_entry();
1560     assert_positive_int(R5_ARG3);
1561 
1562     Register tmp1 = R6_ARG4;
1563     Register tmp2 = R7_ARG5;
1564     Register tmp3 = R8_ARG6;
1565 
1566     address nooverlap_target = aligned ?
1567       STUB_ENTRY(arrayof_jshort_disjoint_arraycopy) :
1568       STUB_ENTRY(jshort_disjoint_arraycopy);
1569 
1570     array_overlap_test(nooverlap_target, 1);
1571 
1572     Label l_1, l_2;
1573     __ sldi(tmp1, R5_ARG3, 1);
1574     __ b(l_2);
1575     __ bind(l_1);
1576     __ sthx(tmp2, R4_ARG2, tmp1);
1577     __ bind(l_2);
1578     __ addic_(tmp1, tmp1, -2);
1579     __ lhzx(tmp2, R3_ARG1, tmp1);
1580     __ bge(CCR0, l_1);
1581 
1582     __ li(R3_RET, 0); // return 0
1583     __ blr();
1584 
1585     return start;
1586   }
1587 
1588   // Generate core code for disjoint int copy (and oop copy on 32-bit).  If "aligned"
1589   // is true, the "from" and "to" addresses are assumed to be heapword aligned.
1590   //
1591   // Arguments:
1592   //      from:  R3_ARG1
1593   //      to:    R4_ARG2
1594   //      count: R5_ARG3 treated as signed
1595   //
1596   void generate_disjoint_int_copy_core(bool aligned) {
1597     Register tmp1 = R6_ARG4;
1598     Register tmp2 = R7_ARG5;
1599     Register tmp3 = R8_ARG6;
1600     Register tmp4 = R0;
1601 
1602     VectorSRegister tmp_vsr1  = VSR1;
1603     VectorSRegister tmp_vsr2  = VSR2;
1604 
1605     Label l_1, l_2, l_3, l_4, l_5, l_6, l_7;
1606 
1607     // for short arrays, just do single element copy
1608     __ li(tmp3, 0);
1609     __ cmpwi(CCR0, R5_ARG3, 5);
1610     __ ble(CCR0, l_2);
1611 
1612     if (!aligned) {
1613         // check if arrays have same alignment mod 8.
1614         __ xorr(tmp1, R3_ARG1, R4_ARG2);
1615         __ andi_(R0, tmp1, 7);
1616         // Not the same alignment, but ld and std just need to be 4 byte aligned.
1617         __ bne(CCR0, l_4); // to OR from is 8 byte aligned -> copy 2 at a time
1618 
1619         // copy 1 element to align to and from on an 8 byte boundary
1620         __ andi_(R0, R3_ARG1, 7);
1621         __ beq(CCR0, l_4);
1622 
1623         __ lwzx(tmp2, R3_ARG1, tmp3);
1624         __ addi(R5_ARG3, R5_ARG3, -1);
1625         __ stwx(tmp2, R4_ARG2, tmp3);
1626         { // FasterArrayCopy
1627           __ addi(R3_ARG1, R3_ARG1, 4);
1628           __ addi(R4_ARG2, R4_ARG2, 4);
1629         }
1630         __ bind(l_4);
1631       }
1632 
1633     { // FasterArrayCopy
1634       __ cmpwi(CCR0, R5_ARG3, 7);
1635       __ ble(CCR0, l_2); // copy 1 at a time if less than 8 elements remain
1636 
1637       __ srdi(tmp1, R5_ARG3, 3);
1638       __ andi_(R5_ARG3, R5_ARG3, 7);
1639       __ mtctr(tmp1);
1640 
1641      if (!VM_Version::has_vsx()) {
1642 
1643       __ bind(l_6);
1644       // Use unrolled version for mass copying (copy 8 elements a time).
1645       // Load feeding store gets zero latency on power6, however not on power 5.
1646       // Therefore, the following sequence is made for the good of both.
1647       __ ld(tmp1, 0, R3_ARG1);
1648       __ ld(tmp2, 8, R3_ARG1);
1649       __ ld(tmp3, 16, R3_ARG1);
1650       __ ld(tmp4, 24, R3_ARG1);
1651       __ std(tmp1, 0, R4_ARG2);
1652       __ std(tmp2, 8, R4_ARG2);
1653       __ std(tmp3, 16, R4_ARG2);
1654       __ std(tmp4, 24, R4_ARG2);
1655       __ addi(R3_ARG1, R3_ARG1, 32);
1656       __ addi(R4_ARG2, R4_ARG2, 32);
1657       __ bdnz(l_6);
1658 
1659     } else { // Processor supports VSX, so use it to mass copy.
1660 
1661       // Prefetch the data into the L2 cache.
1662       __ dcbt(R3_ARG1, 0);
1663 
1664       // If supported set DSCR pre-fetch to deepest.
1665       if (VM_Version::has_mfdscr()) {
1666         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1667         __ mtdscr(tmp2);
1668       }
1669 
1670       __ li(tmp1, 16);
1671 
1672       // Backbranch target aligned to 32-byte. Not 16-byte align as
1673       // loop contains < 8 instructions that fit inside a single
1674       // i-cache sector.
1675       __ align(32);
1676 
1677       __ bind(l_7);
1678       // Use loop with VSX load/store instructions to
1679       // copy 8 elements a time.
1680       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1681       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1682       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src + 16
1683       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16
1684       __ addi(R3_ARG1, R3_ARG1, 32);       // Update src+=32
1685       __ addi(R4_ARG2, R4_ARG2, 32);       // Update dsc+=32
1686       __ bdnz(l_7);                        // Dec CTR and loop if not zero.
1687 
1688       // Restore DSCR pre-fetch value.
1689       if (VM_Version::has_mfdscr()) {
1690         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1691         __ mtdscr(tmp2);
1692       }
1693 
1694     } // VSX
1695    } // FasterArrayCopy
1696 
1697     // copy 1 element at a time
1698     __ bind(l_2);
1699     __ cmpwi(CCR0, R5_ARG3, 0);
1700     __ beq(CCR0, l_1);
1701 
1702     { // FasterArrayCopy
1703       __ mtctr(R5_ARG3);
1704       __ addi(R3_ARG1, R3_ARG1, -4);
1705       __ addi(R4_ARG2, R4_ARG2, -4);
1706 
1707       __ bind(l_3);
1708       __ lwzu(tmp2, 4, R3_ARG1);
1709       __ stwu(tmp2, 4, R4_ARG2);
1710       __ bdnz(l_3);
1711     }
1712 
1713     __ bind(l_1);
1714     return;
1715   }
1716 
1717   // Generate stub for disjoint int copy.  If "aligned" is true, the
1718   // "from" and "to" addresses are assumed to be heapword aligned.
1719   //
1720   // Arguments for generated stub:
1721   //      from:  R3_ARG1
1722   //      to:    R4_ARG2
1723   //      count: R5_ARG3 treated as signed
1724   //
1725   address generate_disjoint_int_copy(bool aligned, const char * name) {
1726     StubCodeMark mark(this, "StubRoutines", name);
1727     address start = __ function_entry();
1728     assert_positive_int(R5_ARG3);
1729     generate_disjoint_int_copy_core(aligned);
1730     __ li(R3_RET, 0); // return 0
1731     __ blr();
1732     return start;
1733   }
1734 
1735   // Generate core code for conjoint int copy (and oop copy on
1736   // 32-bit).  If "aligned" is true, the "from" and "to" addresses
1737   // are assumed to be heapword aligned.
1738   //
1739   // Arguments:
1740   //      from:  R3_ARG1
1741   //      to:    R4_ARG2
1742   //      count: R5_ARG3 treated as signed
1743   //
1744   void generate_conjoint_int_copy_core(bool aligned) {
1745     // Do reverse copy.  We assume the case of actual overlap is rare enough
1746     // that we don't have to optimize it.
1747 
1748     Label l_1, l_2, l_3, l_4, l_5, l_6, l_7;
1749 
1750     Register tmp1 = R6_ARG4;
1751     Register tmp2 = R7_ARG5;
1752     Register tmp3 = R8_ARG6;
1753     Register tmp4 = R0;
1754 
1755     VectorSRegister tmp_vsr1  = VSR1;
1756     VectorSRegister tmp_vsr2  = VSR2;
1757 
1758     { // FasterArrayCopy
1759       __ cmpwi(CCR0, R5_ARG3, 0);
1760       __ beq(CCR0, l_6);
1761 
1762       __ sldi(R5_ARG3, R5_ARG3, 2);
1763       __ add(R3_ARG1, R3_ARG1, R5_ARG3);
1764       __ add(R4_ARG2, R4_ARG2, R5_ARG3);
1765       __ srdi(R5_ARG3, R5_ARG3, 2);
1766 
1767       if (!aligned) {
1768         // check if arrays have same alignment mod 8.
1769         __ xorr(tmp1, R3_ARG1, R4_ARG2);
1770         __ andi_(R0, tmp1, 7);
1771         // Not the same alignment, but ld and std just need to be 4 byte aligned.
1772         __ bne(CCR0, l_7); // to OR from is 8 byte aligned -> copy 2 at a time
1773 
1774         // copy 1 element to align to and from on an 8 byte boundary
1775         __ andi_(R0, R3_ARG1, 7);
1776         __ beq(CCR0, l_7);
1777 
1778         __ addi(R3_ARG1, R3_ARG1, -4);
1779         __ addi(R4_ARG2, R4_ARG2, -4);
1780         __ addi(R5_ARG3, R5_ARG3, -1);
1781         __ lwzx(tmp2, R3_ARG1);
1782         __ stwx(tmp2, R4_ARG2);
1783         __ bind(l_7);
1784       }
1785 
1786       __ cmpwi(CCR0, R5_ARG3, 7);
1787       __ ble(CCR0, l_5); // copy 1 at a time if less than 8 elements remain
1788 
1789       __ srdi(tmp1, R5_ARG3, 3);
1790       __ andi(R5_ARG3, R5_ARG3, 7);
1791       __ mtctr(tmp1);
1792 
1793      if (!VM_Version::has_vsx()) {
1794       __ bind(l_4);
1795       // Use unrolled version for mass copying (copy 4 elements a time).
1796       // Load feeding store gets zero latency on Power6, however not on Power5.
1797       // Therefore, the following sequence is made for the good of both.
1798       __ addi(R3_ARG1, R3_ARG1, -32);
1799       __ addi(R4_ARG2, R4_ARG2, -32);
1800       __ ld(tmp4, 24, R3_ARG1);
1801       __ ld(tmp3, 16, R3_ARG1);
1802       __ ld(tmp2, 8, R3_ARG1);
1803       __ ld(tmp1, 0, R3_ARG1);
1804       __ std(tmp4, 24, R4_ARG2);
1805       __ std(tmp3, 16, R4_ARG2);
1806       __ std(tmp2, 8, R4_ARG2);
1807       __ std(tmp1, 0, R4_ARG2);
1808       __ bdnz(l_4);
1809      } else {  // Processor supports VSX, so use it to mass copy.
1810       // Prefetch the data into the L2 cache.
1811       __ dcbt(R3_ARG1, 0);
1812 
1813       // If supported set DSCR pre-fetch to deepest.
1814       if (VM_Version::has_mfdscr()) {
1815         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1816         __ mtdscr(tmp2);
1817       }
1818 
1819       __ li(tmp1, 16);
1820 
1821       // Backbranch target aligned to 32-byte. Not 16-byte align as
1822       // loop contains < 8 instructions that fit inside a single
1823       // i-cache sector.
1824       __ align(32);
1825 
1826       __ bind(l_4);
1827       // Use loop with VSX load/store instructions to
1828       // copy 8 elements a time.
1829       __ addi(R3_ARG1, R3_ARG1, -32);      // Update src-=32
1830       __ addi(R4_ARG2, R4_ARG2, -32);      // Update dsc-=32
1831       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src+16
1832       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1833       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst+16
1834       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1835       __ bdnz(l_4);
1836 
1837       // Restore DSCR pre-fetch value.
1838       if (VM_Version::has_mfdscr()) {
1839         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1840         __ mtdscr(tmp2);
1841       }
1842      }
1843 
1844       __ cmpwi(CCR0, R5_ARG3, 0);
1845       __ beq(CCR0, l_6);
1846 
1847       __ bind(l_5);
1848       __ mtctr(R5_ARG3);
1849       __ bind(l_3);
1850       __ lwz(R0, -4, R3_ARG1);
1851       __ stw(R0, -4, R4_ARG2);
1852       __ addi(R3_ARG1, R3_ARG1, -4);
1853       __ addi(R4_ARG2, R4_ARG2, -4);
1854       __ bdnz(l_3);
1855 
1856       __ bind(l_6);
1857     }
1858   }
1859 
1860   // Generate stub for conjoint int copy.  If "aligned" is true, the
1861   // "from" and "to" addresses are assumed to be heapword aligned.
1862   //
1863   // Arguments for generated stub:
1864   //      from:  R3_ARG1
1865   //      to:    R4_ARG2
1866   //      count: R5_ARG3 treated as signed
1867   //
1868   address generate_conjoint_int_copy(bool aligned, const char * name) {
1869     StubCodeMark mark(this, "StubRoutines", name);
1870     address start = __ function_entry();
1871     assert_positive_int(R5_ARG3);
1872     address nooverlap_target = aligned ?
1873       STUB_ENTRY(arrayof_jint_disjoint_arraycopy) :
1874       STUB_ENTRY(jint_disjoint_arraycopy);
1875 
1876     array_overlap_test(nooverlap_target, 2);
1877 
1878     generate_conjoint_int_copy_core(aligned);
1879 
1880     __ li(R3_RET, 0); // return 0
1881     __ blr();
1882 
1883     return start;
1884   }
1885 
1886   // Generate core code for disjoint long copy (and oop copy on
1887   // 64-bit).  If "aligned" is true, the "from" and "to" addresses
1888   // are assumed to be heapword aligned.
1889   //
1890   // Arguments:
1891   //      from:  R3_ARG1
1892   //      to:    R4_ARG2
1893   //      count: R5_ARG3 treated as signed
1894   //
1895   void generate_disjoint_long_copy_core(bool aligned) {
1896     Register tmp1 = R6_ARG4;
1897     Register tmp2 = R7_ARG5;
1898     Register tmp3 = R8_ARG6;
1899     Register tmp4 = R0;
1900 
1901     Label l_1, l_2, l_3, l_4, l_5;
1902 
1903     VectorSRegister tmp_vsr1  = VSR1;
1904     VectorSRegister tmp_vsr2  = VSR2;
1905 
1906     { // FasterArrayCopy
1907       __ cmpwi(CCR0, R5_ARG3, 3);
1908       __ ble(CCR0, l_3); // copy 1 at a time if less than 4 elements remain
1909 
1910       __ srdi(tmp1, R5_ARG3, 2);
1911       __ andi_(R5_ARG3, R5_ARG3, 3);
1912       __ mtctr(tmp1);
1913 
1914     if (!VM_Version::has_vsx()) {
1915       __ bind(l_4);
1916       // Use unrolled version for mass copying (copy 4 elements a time).
1917       // Load feeding store gets zero latency on Power6, however not on Power5.
1918       // Therefore, the following sequence is made for the good of both.
1919       __ ld(tmp1, 0, R3_ARG1);
1920       __ ld(tmp2, 8, R3_ARG1);
1921       __ ld(tmp3, 16, R3_ARG1);
1922       __ ld(tmp4, 24, R3_ARG1);
1923       __ std(tmp1, 0, R4_ARG2);
1924       __ std(tmp2, 8, R4_ARG2);
1925       __ std(tmp3, 16, R4_ARG2);
1926       __ std(tmp4, 24, R4_ARG2);
1927       __ addi(R3_ARG1, R3_ARG1, 32);
1928       __ addi(R4_ARG2, R4_ARG2, 32);
1929       __ bdnz(l_4);
1930 
1931     } else { // Processor supports VSX, so use it to mass copy.
1932 
1933       // Prefetch the data into the L2 cache.
1934       __ dcbt(R3_ARG1, 0);
1935 
1936       // If supported set DSCR pre-fetch to deepest.
1937       if (VM_Version::has_mfdscr()) {
1938         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1939         __ mtdscr(tmp2);
1940       }
1941 
1942       __ li(tmp1, 16);
1943 
1944       // Backbranch target aligned to 32-byte. Not 16-byte align as
1945       // loop contains < 8 instructions that fit inside a single
1946       // i-cache sector.
1947       __ align(32);
1948 
1949       __ bind(l_5);
1950       // Use loop with VSX load/store instructions to
1951       // copy 4 elements a time.
1952       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1953       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1954       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src + 16
1955       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16
1956       __ addi(R3_ARG1, R3_ARG1, 32);       // Update src+=32
1957       __ addi(R4_ARG2, R4_ARG2, 32);       // Update dsc+=32
1958       __ bdnz(l_5);                        // Dec CTR and loop if not zero.
1959 
1960       // Restore DSCR pre-fetch value.
1961       if (VM_Version::has_mfdscr()) {
1962         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1963         __ mtdscr(tmp2);
1964       }
1965 
1966     } // VSX
1967    } // FasterArrayCopy
1968 
1969     // copy 1 element at a time
1970     __ bind(l_3);
1971     __ cmpwi(CCR0, R5_ARG3, 0);
1972     __ beq(CCR0, l_1);
1973 
1974     { // FasterArrayCopy
1975       __ mtctr(R5_ARG3);
1976       __ addi(R3_ARG1, R3_ARG1, -8);
1977       __ addi(R4_ARG2, R4_ARG2, -8);
1978 
1979       __ bind(l_2);
1980       __ ldu(R0, 8, R3_ARG1);
1981       __ stdu(R0, 8, R4_ARG2);
1982       __ bdnz(l_2);
1983 
1984     }
1985     __ bind(l_1);
1986   }
1987 
1988   // Generate stub for disjoint long copy.  If "aligned" is true, the
1989   // "from" and "to" addresses are assumed to be heapword aligned.
1990   //
1991   // Arguments for generated stub:
1992   //      from:  R3_ARG1
1993   //      to:    R4_ARG2
1994   //      count: R5_ARG3 treated as signed
1995   //
1996   address generate_disjoint_long_copy(bool aligned, const char * name) {
1997     StubCodeMark mark(this, "StubRoutines", name);
1998     address start = __ function_entry();
1999     assert_positive_int(R5_ARG3);
2000     generate_disjoint_long_copy_core(aligned);
2001     __ li(R3_RET, 0); // return 0
2002     __ blr();
2003 
2004     return start;
2005   }
2006 
2007   // Generate core code for conjoint long copy (and oop copy on
2008   // 64-bit).  If "aligned" is true, the "from" and "to" addresses
2009   // are assumed to be heapword aligned.
2010   //
2011   // Arguments:
2012   //      from:  R3_ARG1
2013   //      to:    R4_ARG2
2014   //      count: R5_ARG3 treated as signed
2015   //
2016   void generate_conjoint_long_copy_core(bool aligned) {
2017     Register tmp1 = R6_ARG4;
2018     Register tmp2 = R7_ARG5;
2019     Register tmp3 = R8_ARG6;
2020     Register tmp4 = R0;
2021 
2022     VectorSRegister tmp_vsr1  = VSR1;
2023     VectorSRegister tmp_vsr2  = VSR2;
2024 
2025     Label l_1, l_2, l_3, l_4, l_5;
2026 
2027     __ cmpwi(CCR0, R5_ARG3, 0);
2028     __ beq(CCR0, l_1);
2029 
2030     { // FasterArrayCopy
2031       __ sldi(R5_ARG3, R5_ARG3, 3);
2032       __ add(R3_ARG1, R3_ARG1, R5_ARG3);
2033       __ add(R4_ARG2, R4_ARG2, R5_ARG3);
2034       __ srdi(R5_ARG3, R5_ARG3, 3);
2035 
2036       __ cmpwi(CCR0, R5_ARG3, 3);
2037       __ ble(CCR0, l_5); // copy 1 at a time if less than 4 elements remain
2038 
2039       __ srdi(tmp1, R5_ARG3, 2);
2040       __ andi(R5_ARG3, R5_ARG3, 3);
2041       __ mtctr(tmp1);
2042 
2043      if (!VM_Version::has_vsx()) {
2044       __ bind(l_4);
2045       // Use unrolled version for mass copying (copy 4 elements a time).
2046       // Load feeding store gets zero latency on Power6, however not on Power5.
2047       // Therefore, the following sequence is made for the good of both.
2048       __ addi(R3_ARG1, R3_ARG1, -32);
2049       __ addi(R4_ARG2, R4_ARG2, -32);
2050       __ ld(tmp4, 24, R3_ARG1);
2051       __ ld(tmp3, 16, R3_ARG1);
2052       __ ld(tmp2, 8, R3_ARG1);
2053       __ ld(tmp1, 0, R3_ARG1);
2054       __ std(tmp4, 24, R4_ARG2);
2055       __ std(tmp3, 16, R4_ARG2);
2056       __ std(tmp2, 8, R4_ARG2);
2057       __ std(tmp1, 0, R4_ARG2);
2058       __ bdnz(l_4);
2059      } else { // Processor supports VSX, so use it to mass copy.
2060       // Prefetch the data into the L2 cache.
2061       __ dcbt(R3_ARG1, 0);
2062 
2063       // If supported set DSCR pre-fetch to deepest.
2064       if (VM_Version::has_mfdscr()) {
2065         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
2066         __ mtdscr(tmp2);
2067       }
2068 
2069       __ li(tmp1, 16);
2070 
2071       // Backbranch target aligned to 32-byte. Not 16-byte align as
2072       // loop contains < 8 instructions that fit inside a single
2073       // i-cache sector.
2074       __ align(32);
2075 
2076       __ bind(l_4);
2077       // Use loop with VSX load/store instructions to
2078       // copy 4 elements a time.
2079       __ addi(R3_ARG1, R3_ARG1, -32);      // Update src-=32
2080       __ addi(R4_ARG2, R4_ARG2, -32);      // Update dsc-=32
2081       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src+16
2082       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
2083       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst+16
2084       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
2085       __ bdnz(l_4);
2086 
2087       // Restore DSCR pre-fetch value.
2088       if (VM_Version::has_mfdscr()) {
2089         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
2090         __ mtdscr(tmp2);
2091       }
2092      }
2093 
2094       __ cmpwi(CCR0, R5_ARG3, 0);
2095       __ beq(CCR0, l_1);
2096 
2097       __ bind(l_5);
2098       __ mtctr(R5_ARG3);
2099       __ bind(l_3);
2100       __ ld(R0, -8, R3_ARG1);
2101       __ std(R0, -8, R4_ARG2);
2102       __ addi(R3_ARG1, R3_ARG1, -8);
2103       __ addi(R4_ARG2, R4_ARG2, -8);
2104       __ bdnz(l_3);
2105 
2106     }
2107     __ bind(l_1);
2108   }
2109 
2110   // Generate stub for conjoint long copy.  If "aligned" is true, the
2111   // "from" and "to" addresses are assumed to be heapword aligned.
2112   //
2113   // Arguments for generated stub:
2114   //      from:  R3_ARG1
2115   //      to:    R4_ARG2
2116   //      count: R5_ARG3 treated as signed
2117   //
2118   address generate_conjoint_long_copy(bool aligned, const char * name) {
2119     StubCodeMark mark(this, "StubRoutines", name);
2120     address start = __ function_entry();
2121     assert_positive_int(R5_ARG3);
2122     address nooverlap_target = aligned ?
2123       STUB_ENTRY(arrayof_jlong_disjoint_arraycopy) :
2124       STUB_ENTRY(jlong_disjoint_arraycopy);
2125 
2126     array_overlap_test(nooverlap_target, 3);
2127     generate_conjoint_long_copy_core(aligned);
2128 
2129     __ li(R3_RET, 0); // return 0
2130     __ blr();
2131 
2132     return start;
2133   }
2134 
2135   // Generate stub for conjoint oop copy.  If "aligned" is true, the
2136   // "from" and "to" addresses are assumed to be heapword aligned.
2137   //
2138   // Arguments for generated stub:
2139   //      from:  R3_ARG1
2140   //      to:    R4_ARG2
2141   //      count: R5_ARG3 treated as signed
2142   //      dest_uninitialized: G1 support
2143   //
2144   address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
2145     StubCodeMark mark(this, "StubRoutines", name);
2146 
2147     address start = __ function_entry();
2148     assert_positive_int(R5_ARG3);
2149     address nooverlap_target = aligned ?
2150       STUB_ENTRY(arrayof_oop_disjoint_arraycopy) :
2151       STUB_ENTRY(oop_disjoint_arraycopy);
2152 
2153     gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);
2154 
2155     // Save arguments.
2156     __ mr(R9_ARG7, R4_ARG2);
2157     __ mr(R10_ARG8, R5_ARG3);
2158 
2159     if (UseCompressedOops) {
2160       array_overlap_test(nooverlap_target, 2);
2161       generate_conjoint_int_copy_core(aligned);
2162     } else {
2163       array_overlap_test(nooverlap_target, 3);
2164       generate_conjoint_long_copy_core(aligned);
2165     }
2166 
2167     gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1);
2168     __ li(R3_RET, 0); // return 0
2169     __ blr();
2170     return start;
2171   }
2172 
2173   // Generate stub for disjoint oop copy.  If "aligned" is true, the
2174   // "from" and "to" addresses are assumed to be heapword aligned.
2175   //
2176   // Arguments for generated stub:
2177   //      from:  R3_ARG1
2178   //      to:    R4_ARG2
2179   //      count: R5_ARG3 treated as signed
2180   //      dest_uninitialized: G1 support
2181   //
2182   address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
2183     StubCodeMark mark(this, "StubRoutines", name);
2184     address start = __ function_entry();
2185     assert_positive_int(R5_ARG3);
2186     gen_write_ref_array_pre_barrier(R3_ARG1, R4_ARG2, R5_ARG3, dest_uninitialized, R9_ARG7);
2187 
2188     // save some arguments, disjoint_long_copy_core destroys them.
2189     // needed for post barrier
2190     __ mr(R9_ARG7, R4_ARG2);
2191     __ mr(R10_ARG8, R5_ARG3);
2192 
2193     if (UseCompressedOops) {
2194       generate_disjoint_int_copy_core(aligned);
2195     } else {
2196       generate_disjoint_long_copy_core(aligned);
2197     }
2198 
2199     gen_write_ref_array_post_barrier(R9_ARG7, R10_ARG8, R11_scratch1);
2200     __ li(R3_RET, 0); // return 0
2201     __ blr();
2202 
2203     return start;
2204   }
2205 
2206 
2207   // Helper for generating a dynamic type check.
2208   // Smashes only the given temp registers.
2209   void generate_type_check(Register sub_klass,
2210                            Register super_check_offset,
2211                            Register super_klass,
2212                            Register temp,
2213                            Label& L_success) {
2214     assert_different_registers(sub_klass, super_check_offset, super_klass);
2215 
2216     BLOCK_COMMENT("type_check:");
2217 
2218     Label L_miss;
2219 
2220     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, R0, &L_success, &L_miss, NULL,
2221                                      super_check_offset);
2222     __ check_klass_subtype_slow_path(sub_klass, super_klass, temp, R0, &L_success, NULL);
2223 
2224     // Fall through on failure!
2225     __ bind(L_miss);
2226   }
2227 
2228 
2229   //  Generate stub for checked oop copy.
2230   //
2231   // Arguments for generated stub:
2232   //      from:  R3
2233   //      to:    R4
2234   //      count: R5 treated as signed
2235   //      ckoff: R6 (super_check_offset)
2236   //      ckval: R7 (super_klass)
2237   //      ret:   R3 zero for success; (-1^K) where K is partial transfer count
2238   //
2239   address generate_checkcast_copy(const char *name, bool dest_uninitialized) {
2240 
2241     const Register R3_from   = R3_ARG1;      // source array address
2242     const Register R4_to     = R4_ARG2;      // destination array address
2243     const Register R5_count  = R5_ARG3;      // elements count
2244     const Register R6_ckoff  = R6_ARG4;      // super_check_offset
2245     const Register R7_ckval  = R7_ARG5;      // super_klass
2246 
2247     const Register R8_offset = R8_ARG6;      // loop var, with stride wordSize
2248     const Register R9_remain = R9_ARG7;      // loop var, with stride -1
2249     const Register R10_oop   = R10_ARG8;     // actual oop copied
2250     const Register R11_klass = R11_scratch1; // oop._klass
2251     const Register R12_tmp   = R12_scratch2;
2252 
2253     const Register R2_minus1 = R2;
2254 
2255     //__ align(CodeEntryAlignment);
2256     StubCodeMark mark(this, "StubRoutines", name);
2257     address start = __ function_entry();
2258 
2259     // Assert that int is 64 bit sign extended and arrays are not conjoint.
2260 #ifdef ASSERT
2261     {
2262     assert_positive_int(R5_ARG3);
2263     const Register tmp1 = R11_scratch1, tmp2 = R12_scratch2;
2264     Label no_overlap;
2265     __ subf(tmp1, R3_ARG1, R4_ARG2); // distance in bytes
2266     __ sldi(tmp2, R5_ARG3, LogBytesPerHeapOop); // size in bytes
2267     __ cmpld(CCR0, R3_ARG1, R4_ARG2); // Use unsigned comparison!
2268     __ cmpld(CCR1, tmp1, tmp2);
2269     __ crnand(CCR0, Assembler::less, CCR1, Assembler::less);
2270     // Overlaps if Src before dst and distance smaller than size.
2271     // Branch to forward copy routine otherwise.
2272     __ blt(CCR0, no_overlap);
2273     __ stop("overlap in checkcast_copy", 0x9543);
2274     __ bind(no_overlap);
2275     }
2276 #endif
2277 
2278     gen_write_ref_array_pre_barrier(R3_from, R4_to, R5_count, dest_uninitialized, R12_tmp, /* preserve: */ R6_ckoff, R7_ckval);
2279 
2280     //inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, R12_tmp, R3_RET);
2281 
2282     Label load_element, store_element, store_null, success, do_card_marks;
2283     __ or_(R9_remain, R5_count, R5_count); // Initialize loop index, and test it.
2284     __ li(R8_offset, 0);                   // Offset from start of arrays.
2285     __ li(R2_minus1, -1);
2286     __ bne(CCR0, load_element);
2287 
2288     // Empty array: Nothing to do.
2289     __ li(R3_RET, 0);           // Return 0 on (trivial) success.
2290     __ blr();
2291 
2292     // ======== begin loop ========
2293     // (Entry is load_element.)
2294     __ align(OptoLoopAlignment);
2295     __ bind(store_element);
2296     if (UseCompressedOops) {
2297       __ encode_heap_oop_not_null(R10_oop);
2298       __ bind(store_null);
2299       __ stw(R10_oop, R8_offset, R4_to);
2300     } else {
2301       __ bind(store_null);
2302       __ std(R10_oop, R8_offset, R4_to);
2303     }
2304 
2305     __ addi(R8_offset, R8_offset, heapOopSize);   // Step to next offset.
2306     __ add_(R9_remain, R2_minus1, R9_remain);     // Decrement the count.
2307     __ beq(CCR0, success);
2308 
2309     // ======== loop entry is here ========
2310     __ bind(load_element);
2311     __ load_heap_oop(R10_oop, R8_offset, R3_from, &store_null);  // Load the oop.
2312 
2313     __ load_klass(R11_klass, R10_oop); // Query the object klass.
2314 
2315     generate_type_check(R11_klass, R6_ckoff, R7_ckval, R12_tmp,
2316                         // Branch to this on success:
2317                         store_element);
2318     // ======== end loop ========
2319 
2320     // It was a real error; we must depend on the caller to finish the job.
2321     // Register R9_remain has number of *remaining* oops, R5_count number of *total* oops.
2322     // Emit GC store barriers for the oops we have copied (R5_count minus R9_remain),
2323     // and report their number to the caller.
2324     __ subf_(R5_count, R9_remain, R5_count);
2325     __ nand(R3_RET, R5_count, R5_count);   // report (-1^K) to caller
2326     __ bne(CCR0, do_card_marks);
2327     __ blr();
2328 
2329     __ bind(success);
2330     __ li(R3_RET, 0);
2331 
2332     __ bind(do_card_marks);
2333     // Store check on R4_to[0..R5_count-1].
2334     gen_write_ref_array_post_barrier(R4_to, R5_count, R12_tmp, /* preserve: */ R3_RET);
2335     __ blr();
2336     return start;
2337   }
2338 
2339 
2340   //  Generate 'unsafe' array copy stub.
2341   //  Though just as safe as the other stubs, it takes an unscaled
2342   //  size_t argument instead of an element count.
2343   //
2344   // Arguments for generated stub:
2345   //      from:  R3
2346   //      to:    R4
2347   //      count: R5 byte count, treated as ssize_t, can be zero
2348   //
2349   // Examines the alignment of the operands and dispatches
2350   // to a long, int, short, or byte copy loop.
2351   //
2352   address generate_unsafe_copy(const char* name,
2353                                address byte_copy_entry,
2354                                address short_copy_entry,
2355                                address int_copy_entry,
2356                                address long_copy_entry) {
2357 
2358     const Register R3_from   = R3_ARG1;      // source array address
2359     const Register R4_to     = R4_ARG2;      // destination array address
2360     const Register R5_count  = R5_ARG3;      // elements count (as long on PPC64)
2361 
2362     const Register R6_bits   = R6_ARG4;      // test copy of low bits
2363     const Register R7_tmp    = R7_ARG5;
2364 
2365     //__ align(CodeEntryAlignment);
2366     StubCodeMark mark(this, "StubRoutines", name);
2367     address start = __ function_entry();
2368 
2369     // Bump this on entry, not on exit:
2370     //inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, R6_bits, R7_tmp);
2371 
2372     Label short_copy, int_copy, long_copy;
2373 
2374     __ orr(R6_bits, R3_from, R4_to);
2375     __ orr(R6_bits, R6_bits, R5_count);
2376     __ andi_(R0, R6_bits, (BytesPerLong-1));
2377     __ beq(CCR0, long_copy);
2378 
2379     __ andi_(R0, R6_bits, (BytesPerInt-1));
2380     __ beq(CCR0, int_copy);
2381 
2382     __ andi_(R0, R6_bits, (BytesPerShort-1));
2383     __ beq(CCR0, short_copy);
2384 
2385     // byte_copy:
2386     __ b(byte_copy_entry);
2387 
2388     __ bind(short_copy);
2389     __ srwi(R5_count, R5_count, LogBytesPerShort);
2390     __ b(short_copy_entry);
2391 
2392     __ bind(int_copy);
2393     __ srwi(R5_count, R5_count, LogBytesPerInt);
2394     __ b(int_copy_entry);
2395 
2396     __ bind(long_copy);
2397     __ srwi(R5_count, R5_count, LogBytesPerLong);
2398     __ b(long_copy_entry);
2399 
2400     return start;
2401   }
2402 
2403 
2404   // Perform range checks on the proposed arraycopy.
2405   // Kills the two temps, but nothing else.
2406   // Also, clean the sign bits of src_pos and dst_pos.
2407   void arraycopy_range_checks(Register src,     // source array oop
2408                               Register src_pos, // source position
2409                               Register dst,     // destination array oop
2410                               Register dst_pos, // destination position
2411                               Register length,  // length of copy
2412                               Register temp1, Register temp2,
2413                               Label& L_failed) {
2414     BLOCK_COMMENT("arraycopy_range_checks:");
2415 
2416     const Register array_length = temp1;  // scratch
2417     const Register end_pos      = temp2;  // scratch
2418 
2419     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
2420     __ lwa(array_length, arrayOopDesc::length_offset_in_bytes(), src);
2421     __ add(end_pos, src_pos, length);  // src_pos + length
2422     __ cmpd(CCR0, end_pos, array_length);
2423     __ bgt(CCR0, L_failed);
2424 
2425     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
2426     __ lwa(array_length, arrayOopDesc::length_offset_in_bytes(), dst);
2427     __ add(end_pos, dst_pos, length);  // src_pos + length
2428     __ cmpd(CCR0, end_pos, array_length);
2429     __ bgt(CCR0, L_failed);
2430 
2431     BLOCK_COMMENT("arraycopy_range_checks done");
2432   }
2433 
2434 
2435   //
2436   //  Generate generic array copy stubs
2437   //
2438   //  Input:
2439   //    R3    -  src oop
2440   //    R4    -  src_pos
2441   //    R5    -  dst oop
2442   //    R6    -  dst_pos
2443   //    R7    -  element count
2444   //
2445   //  Output:
2446   //    R3 ==  0  -  success
2447   //    R3 == -1  -  need to call System.arraycopy
2448   //
2449   address generate_generic_copy(const char *name,
2450                                 address entry_jbyte_arraycopy,
2451                                 address entry_jshort_arraycopy,
2452                                 address entry_jint_arraycopy,
2453                                 address entry_oop_arraycopy,
2454                                 address entry_disjoint_oop_arraycopy,
2455                                 address entry_jlong_arraycopy,
2456                                 address entry_checkcast_arraycopy) {
2457     Label L_failed, L_objArray;
2458 
2459     // Input registers
2460     const Register src       = R3_ARG1;  // source array oop
2461     const Register src_pos   = R4_ARG2;  // source position
2462     const Register dst       = R5_ARG3;  // destination array oop
2463     const Register dst_pos   = R6_ARG4;  // destination position
2464     const Register length    = R7_ARG5;  // elements count
2465 
2466     // registers used as temp
2467     const Register src_klass = R8_ARG6;  // source array klass
2468     const Register dst_klass = R9_ARG7;  // destination array klass
2469     const Register lh        = R10_ARG8; // layout handler
2470     const Register temp      = R2;
2471 
2472     //__ align(CodeEntryAlignment);
2473     StubCodeMark mark(this, "StubRoutines", name);
2474     address start = __ function_entry();
2475 
2476     // Bump this on entry, not on exit:
2477     //inc_counter_np(SharedRuntime::_generic_array_copy_ctr, lh, temp);
2478 
2479     // In principle, the int arguments could be dirty.
2480 
2481     //-----------------------------------------------------------------------
2482     // Assembler stubs will be used for this call to arraycopy
2483     // if the following conditions are met:
2484     //
2485     // (1) src and dst must not be null.
2486     // (2) src_pos must not be negative.
2487     // (3) dst_pos must not be negative.
2488     // (4) length  must not be negative.
2489     // (5) src klass and dst klass should be the same and not NULL.
2490     // (6) src and dst should be arrays.
2491     // (7) src_pos + length must not exceed length of src.
2492     // (8) dst_pos + length must not exceed length of dst.
2493     BLOCK_COMMENT("arraycopy initial argument checks");
2494 
2495     __ cmpdi(CCR1, src, 0);      // if (src == NULL) return -1;
2496     __ extsw_(src_pos, src_pos); // if (src_pos < 0) return -1;
2497     __ cmpdi(CCR5, dst, 0);      // if (dst == NULL) return -1;
2498     __ cror(CCR1, Assembler::equal, CCR0, Assembler::less);
2499     __ extsw_(dst_pos, dst_pos); // if (src_pos < 0) return -1;
2500     __ cror(CCR5, Assembler::equal, CCR0, Assembler::less);
2501     __ extsw_(length, length);   // if (length < 0) return -1;
2502     __ cror(CCR1, Assembler::equal, CCR5, Assembler::equal);
2503     __ cror(CCR1, Assembler::equal, CCR0, Assembler::less);
2504     __ beq(CCR1, L_failed);
2505 
2506     BLOCK_COMMENT("arraycopy argument klass checks");
2507     __ load_klass(src_klass, src);
2508     __ load_klass(dst_klass, dst);
2509 
2510     // Load layout helper
2511     //
2512     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2513     // 32        30    24            16              8     2                 0
2514     //
2515     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2516     //
2517 
2518     int lh_offset = in_bytes(Klass::layout_helper_offset());
2519 
2520     // Load 32-bits signed value. Use br() instruction with it to check icc.
2521     __ lwz(lh, lh_offset, src_klass);
2522 
2523     // Handle objArrays completely differently...
2524     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2525     __ load_const_optimized(temp, objArray_lh, R0);
2526     __ cmpw(CCR0, lh, temp);
2527     __ beq(CCR0, L_objArray);
2528 
2529     __ cmpd(CCR5, src_klass, dst_klass);          // if (src->klass() != dst->klass()) return -1;
2530     __ cmpwi(CCR6, lh, Klass::_lh_neutral_value); // if (!src->is_Array()) return -1;
2531 
2532     __ crnand(CCR5, Assembler::equal, CCR6, Assembler::less);
2533     __ beq(CCR5, L_failed);
2534 
2535     // At this point, it is known to be a typeArray (array_tag 0x3).
2536 #ifdef ASSERT
2537     { Label L;
2538       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
2539       __ load_const_optimized(temp, lh_prim_tag_in_place, R0);
2540       __ cmpw(CCR0, lh, temp);
2541       __ bge(CCR0, L);
2542       __ stop("must be a primitive array");
2543       __ bind(L);
2544     }
2545 #endif
2546 
2547     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2548                            temp, dst_klass, L_failed);
2549 
2550     // TypeArrayKlass
2551     //
2552     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2553     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2554     //
2555 
2556     const Register offset = dst_klass;    // array offset
2557     const Register elsize = src_klass;    // log2 element size
2558 
2559     __ rldicl(offset, lh, 64 - Klass::_lh_header_size_shift, 64 - exact_log2(Klass::_lh_header_size_mask + 1));
2560     __ andi(elsize, lh, Klass::_lh_log2_element_size_mask);
2561     __ add(src, offset, src);       // src array offset
2562     __ add(dst, offset, dst);       // dst array offset
2563 
2564     // Next registers should be set before the jump to corresponding stub.
2565     const Register from     = R3_ARG1;  // source array address
2566     const Register to       = R4_ARG2;  // destination array address
2567     const Register count    = R5_ARG3;  // elements count
2568 
2569     // 'from', 'to', 'count' registers should be set in this order
2570     // since they are the same as 'src', 'src_pos', 'dst'.
2571 
2572     BLOCK_COMMENT("scale indexes to element size");
2573     __ sld(src_pos, src_pos, elsize);
2574     __ sld(dst_pos, dst_pos, elsize);
2575     __ add(from, src_pos, src);  // src_addr
2576     __ add(to, dst_pos, dst);    // dst_addr
2577     __ mr(count, length);        // length
2578 
2579     BLOCK_COMMENT("choose copy loop based on element size");
2580     // Using conditional branches with range 32kB.
2581     const int bo = Assembler::bcondCRbiIs1, bi = Assembler::bi0(CCR0, Assembler::equal);
2582     __ cmpwi(CCR0, elsize, 0);
2583     __ bc(bo, bi, entry_jbyte_arraycopy);
2584     __ cmpwi(CCR0, elsize, LogBytesPerShort);
2585     __ bc(bo, bi, entry_jshort_arraycopy);
2586     __ cmpwi(CCR0, elsize, LogBytesPerInt);
2587     __ bc(bo, bi, entry_jint_arraycopy);
2588 #ifdef ASSERT
2589     { Label L;
2590       __ cmpwi(CCR0, elsize, LogBytesPerLong);
2591       __ beq(CCR0, L);
2592       __ stop("must be long copy, but elsize is wrong");
2593       __ bind(L);
2594     }
2595 #endif
2596     __ b(entry_jlong_arraycopy);
2597 
2598     // ObjArrayKlass
2599   __ bind(L_objArray);
2600     // live at this point:  src_klass, dst_klass, src[_pos], dst[_pos], length
2601 
2602     Label L_disjoint_plain_copy, L_checkcast_copy;
2603     //  test array classes for subtyping
2604     __ cmpd(CCR0, src_klass, dst_klass);         // usual case is exact equality
2605     __ bne(CCR0, L_checkcast_copy);
2606 
2607     // Identically typed arrays can be copied without element-wise checks.
2608     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2609                            temp, lh, L_failed);
2610 
2611     __ addi(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset
2612     __ addi(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset
2613     __ sldi(src_pos, src_pos, LogBytesPerHeapOop);
2614     __ sldi(dst_pos, dst_pos, LogBytesPerHeapOop);
2615     __ add(from, src_pos, src);  // src_addr
2616     __ add(to, dst_pos, dst);    // dst_addr
2617     __ mr(count, length);        // length
2618     __ b(entry_oop_arraycopy);
2619 
2620   __ bind(L_checkcast_copy);
2621     // live at this point:  src_klass, dst_klass
2622     {
2623       // Before looking at dst.length, make sure dst is also an objArray.
2624       __ lwz(temp, lh_offset, dst_klass);
2625       __ cmpw(CCR0, lh, temp);
2626       __ bne(CCR0, L_failed);
2627 
2628       // It is safe to examine both src.length and dst.length.
2629       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2630                              temp, lh, L_failed);
2631 
2632       // Marshal the base address arguments now, freeing registers.
2633       __ addi(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset
2634       __ addi(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset
2635       __ sldi(src_pos, src_pos, LogBytesPerHeapOop);
2636       __ sldi(dst_pos, dst_pos, LogBytesPerHeapOop);
2637       __ add(from, src_pos, src);  // src_addr
2638       __ add(to, dst_pos, dst);    // dst_addr
2639       __ mr(count, length);        // length
2640 
2641       Register sco_temp = R6_ARG4;             // This register is free now.
2642       assert_different_registers(from, to, count, sco_temp,
2643                                  dst_klass, src_klass);
2644 
2645       // Generate the type check.
2646       int sco_offset = in_bytes(Klass::super_check_offset_offset());
2647       __ lwz(sco_temp, sco_offset, dst_klass);
2648       generate_type_check(src_klass, sco_temp, dst_klass,
2649                           temp, L_disjoint_plain_copy);
2650 
2651       // Fetch destination element klass from the ObjArrayKlass header.
2652       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2653 
2654       // The checkcast_copy loop needs two extra arguments:
2655       __ ld(R7_ARG5, ek_offset, dst_klass);   // dest elem klass
2656       __ lwz(R6_ARG4, sco_offset, R7_ARG5);   // sco of elem klass
2657       __ b(entry_checkcast_arraycopy);
2658     }
2659 
2660     __ bind(L_disjoint_plain_copy);
2661     __ b(entry_disjoint_oop_arraycopy);
2662 
2663   __ bind(L_failed);
2664     __ li(R3_RET, -1); // return -1
2665     __ blr();
2666     return start;
2667   }
2668 
2669   // Arguments for generated stub (little endian only):
2670   //   R3_ARG1   - source byte array address
2671   //   R4_ARG2   - destination byte array address
2672   //   R5_ARG3   - round key array
2673   address generate_aescrypt_encryptBlock() {
2674     assert(UseAES, "need AES instructions and misaligned SSE support");
2675     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2676 
2677     address start = __ function_entry();
2678 
2679     Label L_doLast;
2680 
2681     Register from           = R3_ARG1;  // source array address
2682     Register to             = R4_ARG2;  // destination array address
2683     Register key            = R5_ARG3;  // round key array
2684 
2685     Register keylen         = R8;
2686     Register temp           = R9;
2687     Register keypos         = R10;
2688     Register hex            = R11;
2689     Register fifteen        = R12;
2690 
2691     VectorRegister vRet     = VR0;
2692 
2693     VectorRegister vKey1    = VR1;
2694     VectorRegister vKey2    = VR2;
2695     VectorRegister vKey3    = VR3;
2696     VectorRegister vKey4    = VR4;
2697 
2698     VectorRegister fromPerm = VR5;
2699     VectorRegister keyPerm  = VR6;
2700     VectorRegister toPerm   = VR7;
2701     VectorRegister fSplt    = VR8;
2702 
2703     VectorRegister vTmp1    = VR9;
2704     VectorRegister vTmp2    = VR10;
2705     VectorRegister vTmp3    = VR11;
2706     VectorRegister vTmp4    = VR12;
2707 
2708     VectorRegister vLow     = VR13;
2709     VectorRegister vHigh    = VR14;
2710 
2711     __ li              (hex, 16);
2712     __ li              (fifteen, 15);
2713     __ vspltisb        (fSplt, 0x0f);
2714 
2715     // load unaligned from[0-15] to vsRet
2716     __ lvx             (vRet, from);
2717     __ lvx             (vTmp1, fifteen, from);
2718     __ lvsl            (fromPerm, from);
2719     __ vxor            (fromPerm, fromPerm, fSplt);
2720     __ vperm           (vRet, vRet, vTmp1, fromPerm);
2721 
2722     // load keylen (44 or 52 or 60)
2723     __ lwz             (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key);
2724 
2725     // to load keys
2726     __ lvsr            (keyPerm, key);
2727     __ vxor            (vTmp2, vTmp2, vTmp2);
2728     __ vspltisb        (vTmp2, -16);
2729     __ vrld            (keyPerm, keyPerm, vTmp2);
2730     __ vrld            (keyPerm, keyPerm, vTmp2);
2731     __ vsldoi          (keyPerm, keyPerm, keyPerm, -8);
2732 
2733     // load the 1st round key to vKey1
2734     __ li              (keypos, 0);
2735     __ lvx             (vKey1, keypos, key);
2736     __ addi            (keypos, keypos, 16);
2737     __ lvx             (vTmp1, keypos, key);
2738     __ vperm           (vKey1, vTmp1, vKey1, keyPerm);
2739 
2740     // 1st round
2741     __ vxor (vRet, vRet, vKey1);
2742 
2743     // load the 2nd round key to vKey1
2744     __ addi            (keypos, keypos, 16);
2745     __ lvx             (vTmp2, keypos, key);
2746     __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);
2747 
2748     // load the 3rd round key to vKey2
2749     __ addi            (keypos, keypos, 16);
2750     __ lvx             (vTmp1, keypos, key);
2751     __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);
2752 
2753     // load the 4th round key to vKey3
2754     __ addi            (keypos, keypos, 16);
2755     __ lvx             (vTmp2, keypos, key);
2756     __ vperm           (vKey3, vTmp2, vTmp1, keyPerm);
2757 
2758     // load the 5th round key to vKey4
2759     __ addi            (keypos, keypos, 16);
2760     __ lvx             (vTmp1, keypos, key);
2761     __ vperm           (vKey4, vTmp1, vTmp2, keyPerm);
2762 
2763     // 2nd - 5th rounds
2764     __ vcipher (vRet, vRet, vKey1);
2765     __ vcipher (vRet, vRet, vKey2);
2766     __ vcipher (vRet, vRet, vKey3);
2767     __ vcipher (vRet, vRet, vKey4);
2768 
2769     // load the 6th round key to vKey1
2770     __ addi            (keypos, keypos, 16);
2771     __ lvx             (vTmp2, keypos, key);
2772     __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);
2773 
2774     // load the 7th round key to vKey2
2775     __ addi            (keypos, keypos, 16);
2776     __ lvx             (vTmp1, keypos, key);
2777     __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);
2778 
2779     // load the 8th round key to vKey3
2780     __ addi            (keypos, keypos, 16);
2781     __ lvx             (vTmp2, keypos, key);
2782     __ vperm           (vKey3, vTmp2, vTmp1, keyPerm);
2783 
2784     // load the 9th round key to vKey4
2785     __ addi            (keypos, keypos, 16);
2786     __ lvx             (vTmp1, keypos, key);
2787     __ vperm           (vKey4, vTmp1, vTmp2, keyPerm);
2788 
2789     // 6th - 9th rounds
2790     __ vcipher (vRet, vRet, vKey1);
2791     __ vcipher (vRet, vRet, vKey2);
2792     __ vcipher (vRet, vRet, vKey3);
2793     __ vcipher (vRet, vRet, vKey4);
2794 
2795     // load the 10th round key to vKey1
2796     __ addi            (keypos, keypos, 16);
2797     __ lvx             (vTmp2, keypos, key);
2798     __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);
2799 
2800     // load the 11th round key to vKey2
2801     __ addi            (keypos, keypos, 16);
2802     __ lvx             (vTmp1, keypos, key);
2803     __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);
2804 
2805     // if all round keys are loaded, skip next 4 rounds
2806     __ cmpwi           (CCR0, keylen, 44);
2807     __ beq             (CCR0, L_doLast);
2808 
2809     // 10th - 11th rounds
2810     __ vcipher (vRet, vRet, vKey1);
2811     __ vcipher (vRet, vRet, vKey2);
2812 
2813     // load the 12th round key to vKey1
2814     __ addi            (keypos, keypos, 16);
2815     __ lvx             (vTmp2, keypos, key);
2816     __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);
2817 
2818     // load the 13th round key to vKey2
2819     __ addi            (keypos, keypos, 16);
2820     __ lvx             (vTmp1, keypos, key);
2821     __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);
2822 
2823     // if all round keys are loaded, skip next 2 rounds
2824     __ cmpwi           (CCR0, keylen, 52);
2825     __ beq             (CCR0, L_doLast);
2826 
2827     // 12th - 13th rounds
2828     __ vcipher (vRet, vRet, vKey1);
2829     __ vcipher (vRet, vRet, vKey2);
2830 
2831     // load the 14th round key to vKey1
2832     __ addi            (keypos, keypos, 16);
2833     __ lvx             (vTmp2, keypos, key);
2834     __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);
2835 
2836     // load the 15th round key to vKey2
2837     __ addi            (keypos, keypos, 16);
2838     __ lvx             (vTmp1, keypos, key);
2839     __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);
2840 
2841     __ bind(L_doLast);
2842 
2843     // last two rounds
2844     __ vcipher (vRet, vRet, vKey1);
2845     __ vcipherlast (vRet, vRet, vKey2);
2846 
2847     __ neg             (temp, to);
2848     __ lvsr            (toPerm, temp);
2849     __ vspltisb        (vTmp2, -1);
2850     __ vxor            (vTmp1, vTmp1, vTmp1);
2851     __ vperm           (vTmp2, vTmp2, vTmp1, toPerm);
2852     __ vxor            (toPerm, toPerm, fSplt);
2853     __ lvx             (vTmp1, to);
2854     __ vperm           (vRet, vRet, vRet, toPerm);
2855     __ vsel            (vTmp1, vTmp1, vRet, vTmp2);
2856     __ lvx             (vTmp4, fifteen, to);
2857     __ stvx            (vTmp1, to);
2858     __ vsel            (vRet, vRet, vTmp4, vTmp2);
2859     __ stvx            (vRet, fifteen, to);
2860 
2861     __ blr();
2862      return start;
2863   }
2864 
2865   // Arguments for generated stub (little endian only):
2866   //   R3_ARG1   - source byte array address
2867   //   R4_ARG2   - destination byte array address
2868   //   R5_ARG3   - K (key) in little endian int array
2869   address generate_aescrypt_decryptBlock() {
2870     assert(UseAES, "need AES instructions and misaligned SSE support");
2871     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2872 
2873     address start = __ function_entry();
2874 
2875     Label L_doLast;
2876     Label L_do44;
2877     Label L_do52;
2878     Label L_do60;
2879 
2880     Register from           = R3_ARG1;  // source array address
2881     Register to             = R4_ARG2;  // destination array address
2882     Register key            = R5_ARG3;  // round key array
2883 
2884     Register keylen         = R8;
2885     Register temp           = R9;
2886     Register keypos         = R10;
2887     Register hex            = R11;
2888     Register fifteen        = R12;
2889 
2890     VectorRegister vRet     = VR0;
2891 
2892     VectorRegister vKey1    = VR1;
2893     VectorRegister vKey2    = VR2;
2894     VectorRegister vKey3    = VR3;
2895     VectorRegister vKey4    = VR4;
2896     VectorRegister vKey5    = VR5;
2897 
2898     VectorRegister fromPerm = VR6;
2899     VectorRegister keyPerm  = VR7;
2900     VectorRegister toPerm   = VR8;
2901     VectorRegister fSplt    = VR9;
2902 
2903     VectorRegister vTmp1    = VR10;
2904     VectorRegister vTmp2    = VR11;
2905     VectorRegister vTmp3    = VR12;
2906     VectorRegister vTmp4    = VR13;
2907 
2908     VectorRegister vLow     = VR14;
2909     VectorRegister vHigh    = VR15;
2910 
2911     __ li              (hex, 16);
2912     __ li              (fifteen, 15);
2913     __ vspltisb        (fSplt, 0x0f);
2914 
2915     // load unaligned from[0-15] to vsRet
2916     __ lvx             (vRet, from);
2917     __ lvx             (vTmp1, fifteen, from);
2918     __ lvsl            (fromPerm, from);
2919     __ vxor            (fromPerm, fromPerm, fSplt);
2920     __ vperm           (vRet, vRet, vTmp1, fromPerm); // align [and byte swap in LE]
2921 
2922     // load keylen (44 or 52 or 60)
2923     __ lwz             (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key);
2924 
2925     // to load keys
2926     __ lvsr            (keyPerm, key);
2927     __ vxor            (vTmp2, vTmp2, vTmp2);
2928     __ vspltisb        (vTmp2, -16);
2929     __ vrld            (keyPerm, keyPerm, vTmp2);
2930     __ vrld            (keyPerm, keyPerm, vTmp2);
2931     __ vsldoi          (keyPerm, keyPerm, keyPerm, -8);
2932 
2933     __ cmpwi           (CCR0, keylen, 44);
2934     __ beq             (CCR0, L_do44);
2935 
2936     __ cmpwi           (CCR0, keylen, 52);
2937     __ beq             (CCR0, L_do52);
2938 
2939     // load the 15th round key to vKey11
2940     __ li              (keypos, 240);
2941     __ lvx             (vTmp1, keypos, key);
2942     __ addi            (keypos, keypos, -16);
2943     __ lvx             (vTmp2, keypos, key);
2944     __ vperm           (vKey1, vTmp1, vTmp2, keyPerm);
2945 
2946     // load the 14th round key to vKey10
2947     __ addi            (keypos, keypos, -16);
2948     __ lvx             (vTmp1, keypos, key);
2949     __ vperm           (vKey2, vTmp2, vTmp1, keyPerm);
2950 
2951     // load the 13th round key to vKey10
2952     __ addi            (keypos, keypos, -16);
2953     __ lvx             (vTmp2, keypos, key);
2954     __ vperm           (vKey3, vTmp1, vTmp2, keyPerm);
2955 
2956     // load the 12th round key to vKey10
2957     __ addi            (keypos, keypos, -16);
2958     __ lvx             (vTmp1, keypos, key);
2959     __ vperm           (vKey4, vTmp2, vTmp1, keyPerm);
2960 
2961     // load the 11th round key to vKey10
2962     __ addi            (keypos, keypos, -16);
2963     __ lvx             (vTmp2, keypos, key);
2964     __ vperm           (vKey5, vTmp1, vTmp2, keyPerm);
2965 
2966     // 1st - 5th rounds
2967     __ vxor            (vRet, vRet, vKey1);
2968     __ vncipher        (vRet, vRet, vKey2);
2969     __ vncipher        (vRet, vRet, vKey3);
2970     __ vncipher        (vRet, vRet, vKey4);
2971     __ vncipher        (vRet, vRet, vKey5);
2972 
2973     __ b               (L_doLast);
2974 
2975     __ bind            (L_do52);
2976 
2977     // load the 13th round key to vKey11
2978     __ li              (keypos, 208);
2979     __ lvx             (vTmp1, keypos, key);
2980     __ addi            (keypos, keypos, -16);
2981     __ lvx             (vTmp2, keypos, key);
2982     __ vperm           (vKey1, vTmp1, vTmp2, keyPerm);
2983 
2984     // load the 12th round key to vKey10
2985     __ addi            (keypos, keypos, -16);
2986     __ lvx             (vTmp1, keypos, key);
2987     __ vperm           (vKey2, vTmp2, vTmp1, keyPerm);
2988 
2989     // load the 11th round key to vKey10
2990     __ addi            (keypos, keypos, -16);
2991     __ lvx             (vTmp2, keypos, key);
2992     __ vperm           (vKey3, vTmp1, vTmp2, keyPerm);
2993 
2994     // 1st - 3rd rounds
2995     __ vxor            (vRet, vRet, vKey1);
2996     __ vncipher        (vRet, vRet, vKey2);
2997     __ vncipher        (vRet, vRet, vKey3);
2998 
2999     __ b               (L_doLast);
3000 
3001     __ bind            (L_do44);
3002 
3003     // load the 11th round key to vKey11
3004     __ li              (keypos, 176);
3005     __ lvx             (vTmp1, keypos, key);
3006     __ addi            (keypos, keypos, -16);
3007     __ lvx             (vTmp2, keypos, key);
3008     __ vperm           (vKey1, vTmp1, vTmp2, keyPerm);
3009 
3010     // 1st round
3011     __ vxor            (vRet, vRet, vKey1);
3012 
3013     __ bind            (L_doLast);
3014 
3015     // load the 10th round key to vKey10
3016     __ addi            (keypos, keypos, -16);
3017     __ lvx             (vTmp1, keypos, key);
3018     __ vperm           (vKey1, vTmp2, vTmp1, keyPerm);
3019 
3020     // load the 9th round key to vKey10
3021     __ addi            (keypos, keypos, -16);
3022     __ lvx             (vTmp2, keypos, key);
3023     __ vperm           (vKey2, vTmp1, vTmp2, keyPerm);
3024 
3025     // load the 8th round key to vKey10
3026     __ addi            (keypos, keypos, -16);
3027     __ lvx             (vTmp1, keypos, key);
3028     __ vperm           (vKey3, vTmp2, vTmp1, keyPerm);
3029 
3030     // load the 7th round key to vKey10
3031     __ addi            (keypos, keypos, -16);
3032     __ lvx             (vTmp2, keypos, key);
3033     __ vperm           (vKey4, vTmp1, vTmp2, keyPerm);
3034 
3035     // load the 6th round key to vKey10
3036     __ addi            (keypos, keypos, -16);
3037     __ lvx             (vTmp1, keypos, key);
3038     __ vperm           (vKey5, vTmp2, vTmp1, keyPerm);
3039 
3040     // last 10th - 6th rounds
3041     __ vncipher        (vRet, vRet, vKey1);
3042     __ vncipher        (vRet, vRet, vKey2);
3043     __ vncipher        (vRet, vRet, vKey3);
3044     __ vncipher        (vRet, vRet, vKey4);
3045     __ vncipher        (vRet, vRet, vKey5);
3046 
3047     // load the 5th round key to vKey10
3048     __ addi            (keypos, keypos, -16);
3049     __ lvx             (vTmp2, keypos, key);
3050     __ vperm           (vKey1, vTmp1, vTmp2, keyPerm);
3051 
3052     // load the 4th round key to vKey10
3053     __ addi            (keypos, keypos, -16);
3054     __ lvx             (vTmp1, keypos, key);
3055     __ vperm           (vKey2, vTmp2, vTmp1, keyPerm);
3056 
3057     // load the 3rd round key to vKey10
3058     __ addi            (keypos, keypos, -16);
3059     __ lvx             (vTmp2, keypos, key);
3060     __ vperm           (vKey3, vTmp1, vTmp2, keyPerm);
3061 
3062     // load the 2nd round key to vKey10
3063     __ addi            (keypos, keypos, -16);
3064     __ lvx             (vTmp1, keypos, key);
3065     __ vperm           (vKey4, vTmp2, vTmp1, keyPerm);
3066 
3067     // load the 1st round key to vKey10
3068     __ addi            (keypos, keypos, -16);
3069     __ lvx             (vTmp2, keypos, key);
3070     __ vperm           (vKey5, vTmp1, vTmp2, keyPerm);
3071 
3072     // last 5th - 1th rounds
3073     __ vncipher        (vRet, vRet, vKey1);
3074     __ vncipher        (vRet, vRet, vKey2);
3075     __ vncipher        (vRet, vRet, vKey3);
3076     __ vncipher        (vRet, vRet, vKey4);
3077     __ vncipherlast    (vRet, vRet, vKey5);
3078 
3079     __ neg             (temp, to);
3080     __ lvsr            (toPerm, temp);
3081     __ vspltisb        (vTmp2, -1);
3082     __ vxor            (vTmp1, vTmp1, vTmp1);
3083     __ vperm           (vTmp2, vTmp2, vTmp1, toPerm);
3084     __ vxor            (toPerm, toPerm, fSplt);
3085     __ lvx             (vTmp1, to);
3086     __ vperm           (vRet, vRet, vRet, toPerm);
3087     __ vsel            (vTmp1, vTmp1, vRet, vTmp2);
3088     __ lvx             (vTmp4, fifteen, to);
3089     __ stvx            (vTmp1, to);
3090     __ vsel            (vRet, vRet, vTmp4, vTmp2);
3091     __ stvx            (vRet, fifteen, to);
3092 
3093     __ blr();
3094      return start;
3095   }
3096 
3097   void generate_arraycopy_stubs() {
3098     // Note: the disjoint stubs must be generated first, some of
3099     // the conjoint stubs use them.
3100 
3101     // non-aligned disjoint versions
3102     StubRoutines::_jbyte_disjoint_arraycopy       = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
3103     StubRoutines::_jshort_disjoint_arraycopy      = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
3104     StubRoutines::_jint_disjoint_arraycopy        = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
3105     StubRoutines::_jlong_disjoint_arraycopy       = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
3106     StubRoutines::_oop_disjoint_arraycopy         = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy", false);
3107     StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy_uninit", true);
3108 
3109     // aligned disjoint versions
3110     StubRoutines::_arrayof_jbyte_disjoint_arraycopy      = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
3111     StubRoutines::_arrayof_jshort_disjoint_arraycopy     = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
3112     StubRoutines::_arrayof_jint_disjoint_arraycopy       = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
3113     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
3114     StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy", false);
3115     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, "oop_disjoint_arraycopy_uninit", true);
3116 
3117     // non-aligned conjoint versions
3118     StubRoutines::_jbyte_arraycopy      = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
3119     StubRoutines::_jshort_arraycopy     = generate_conjoint_short_copy(false, "jshort_arraycopy");
3120     StubRoutines::_jint_arraycopy       = generate_conjoint_int_copy(false, "jint_arraycopy");
3121     StubRoutines::_jlong_arraycopy      = generate_conjoint_long_copy(false, "jlong_arraycopy");
3122     StubRoutines::_oop_arraycopy        = generate_conjoint_oop_copy(false, "oop_arraycopy", false);
3123     StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, "oop_arraycopy_uninit", true);
3124 
3125     // aligned conjoint versions
3126     StubRoutines::_arrayof_jbyte_arraycopy      = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
3127     StubRoutines::_arrayof_jshort_arraycopy     = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
3128     StubRoutines::_arrayof_jint_arraycopy       = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
3129     StubRoutines::_arrayof_jlong_arraycopy      = generate_conjoint_long_copy(true, "arrayof_jlong_arraycopy");
3130     StubRoutines::_arrayof_oop_arraycopy        = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", false);
3131     StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", true);
3132 
3133     // special/generic versions
3134     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", false);
3135     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", true);
3136 
3137     StubRoutines::_unsafe_arraycopy  = generate_unsafe_copy("unsafe_arraycopy",
3138                                                             STUB_ENTRY(jbyte_arraycopy),
3139                                                             STUB_ENTRY(jshort_arraycopy),
3140                                                             STUB_ENTRY(jint_arraycopy),
3141                                                             STUB_ENTRY(jlong_arraycopy));
3142     StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
3143                                                              STUB_ENTRY(jbyte_arraycopy),
3144                                                              STUB_ENTRY(jshort_arraycopy),
3145                                                              STUB_ENTRY(jint_arraycopy),
3146                                                              STUB_ENTRY(oop_arraycopy),
3147                                                              STUB_ENTRY(oop_disjoint_arraycopy),
3148                                                              STUB_ENTRY(jlong_arraycopy),
3149                                                              STUB_ENTRY(checkcast_arraycopy));
3150 
3151     // fill routines
3152     if (OptimizeFill) {
3153       StubRoutines::_jbyte_fill          = generate_fill(T_BYTE,  false, "jbyte_fill");
3154       StubRoutines::_jshort_fill         = generate_fill(T_SHORT, false, "jshort_fill");
3155       StubRoutines::_jint_fill           = generate_fill(T_INT,   false, "jint_fill");
3156       StubRoutines::_arrayof_jbyte_fill  = generate_fill(T_BYTE,  true, "arrayof_jbyte_fill");
3157       StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
3158       StubRoutines::_arrayof_jint_fill   = generate_fill(T_INT,   true, "arrayof_jint_fill");
3159     }
3160   }
3161 
3162   // Safefetch stubs.
3163   void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) {
3164     // safefetch signatures:
3165     //   int      SafeFetch32(int*      adr, int      errValue);
3166     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
3167     //
3168     // arguments:
3169     //   R3_ARG1 = adr
3170     //   R4_ARG2 = errValue
3171     //
3172     // result:
3173     //   R3_RET  = *adr or errValue
3174 
3175     StubCodeMark mark(this, "StubRoutines", name);
3176 
3177     // Entry point, pc or function descriptor.
3178     *entry = __ function_entry();
3179 
3180     // Load *adr into R4_ARG2, may fault.
3181     *fault_pc = __ pc();
3182     switch (size) {
3183       case 4:
3184         // int32_t, signed extended
3185         __ lwa(R4_ARG2, 0, R3_ARG1);
3186         break;
3187       case 8:
3188         // int64_t
3189         __ ld(R4_ARG2, 0, R3_ARG1);
3190         break;
3191       default:
3192         ShouldNotReachHere();
3193     }
3194 
3195     // return errValue or *adr
3196     *continuation_pc = __ pc();
3197     __ mr(R3_RET, R4_ARG2);
3198     __ blr();
3199   }
3200 
3201   // Stub for BigInteger::multiplyToLen()
3202   //
3203   //  Arguments:
3204   //
3205   //  Input:
3206   //    R3 - x address
3207   //    R4 - x length
3208   //    R5 - y address
3209   //    R6 - y length
3210   //    R7 - z address
3211   //    R8 - z length
3212   //
3213   address generate_multiplyToLen() {
3214 
3215     StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
3216 
3217     address start = __ function_entry();
3218 
3219     const Register x     = R3;
3220     const Register xlen  = R4;
3221     const Register y     = R5;
3222     const Register ylen  = R6;
3223     const Register z     = R7;
3224     const Register zlen  = R8;
3225 
3226     const Register tmp1  = R2; // TOC not used.
3227     const Register tmp2  = R9;
3228     const Register tmp3  = R10;
3229     const Register tmp4  = R11;
3230     const Register tmp5  = R12;
3231 
3232     // non-volatile regs
3233     const Register tmp6  = R31;
3234     const Register tmp7  = R30;
3235     const Register tmp8  = R29;
3236     const Register tmp9  = R28;
3237     const Register tmp10 = R27;
3238     const Register tmp11 = R26;
3239     const Register tmp12 = R25;
3240     const Register tmp13 = R24;
3241 
3242     BLOCK_COMMENT("Entry:");
3243 
3244     // C2 does not respect int to long conversion for stub calls.
3245     __ clrldi(xlen, xlen, 32);
3246     __ clrldi(ylen, ylen, 32);
3247     __ clrldi(zlen, zlen, 32);
3248 
3249     // Save non-volatile regs (frameless).
3250     int current_offs = 8;
3251     __ std(R24, -current_offs, R1_SP); current_offs += 8;
3252     __ std(R25, -current_offs, R1_SP); current_offs += 8;
3253     __ std(R26, -current_offs, R1_SP); current_offs += 8;
3254     __ std(R27, -current_offs, R1_SP); current_offs += 8;
3255     __ std(R28, -current_offs, R1_SP); current_offs += 8;
3256     __ std(R29, -current_offs, R1_SP); current_offs += 8;
3257     __ std(R30, -current_offs, R1_SP); current_offs += 8;
3258     __ std(R31, -current_offs, R1_SP);
3259 
3260     __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5,
3261                        tmp6, tmp7, tmp8, tmp9, tmp10, tmp11, tmp12, tmp13);
3262 
3263     // Restore non-volatile regs.
3264     current_offs = 8;
3265     __ ld(R24, -current_offs, R1_SP); current_offs += 8;
3266     __ ld(R25, -current_offs, R1_SP); current_offs += 8;
3267     __ ld(R26, -current_offs, R1_SP); current_offs += 8;
3268     __ ld(R27, -current_offs, R1_SP); current_offs += 8;
3269     __ ld(R28, -current_offs, R1_SP); current_offs += 8;
3270     __ ld(R29, -current_offs, R1_SP); current_offs += 8;
3271     __ ld(R30, -current_offs, R1_SP); current_offs += 8;
3272     __ ld(R31, -current_offs, R1_SP);
3273 
3274     __ blr();  // Return to caller.
3275 
3276     return start;
3277   }
3278 
3279   /**
3280    * Arguments:
3281    *
3282    * Inputs:
3283    *   R3_ARG1    - int   crc
3284    *   R4_ARG2    - byte* buf
3285    *   R5_ARG3    - int   length (of buffer)
3286    *
3287    * scratch:
3288    *   R2, R6-R12
3289    *
3290    * Ouput:
3291    *   R3_RET     - int   crc result
3292    */
3293   // Compute CRC32 function.
3294   address generate_CRC32_updateBytes(const char* name) {
3295     __ align(CodeEntryAlignment);
3296     StubCodeMark mark(this, "StubRoutines", name);
3297     address start = __ function_entry();  // Remember stub start address (is rtn value).
3298 
3299     // arguments to kernel_crc32:
3300     const Register crc     = R3_ARG1;  // Current checksum, preset by caller or result from previous call.
3301     const Register data    = R4_ARG2;  // source byte array
3302     const Register dataLen = R5_ARG3;  // #bytes to process
3303 
3304     const Register table   = R6;       // crc table address
3305 
3306 #ifdef VM_LITTLE_ENDIAN
3307     if (VM_Version::has_vpmsumb()) {
3308       const Register constants    = R2;  // constants address
3309       const Register bconstants   = R8;  // barret table address
3310 
3311       const Register t0      = R9;
3312       const Register t1      = R10;
3313       const Register t2      = R11;
3314       const Register t3      = R12;
3315       const Register t4      = R7;
3316 
3317       BLOCK_COMMENT("Stub body {");
3318       assert_different_registers(crc, data, dataLen, table);
3319 
3320       StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
3321       StubRoutines::ppc64::generate_load_crc_constants_addr(_masm, constants);
3322       StubRoutines::ppc64::generate_load_crc_barret_constants_addr(_masm, bconstants);
3323 
3324       __ kernel_crc32_1word_vpmsumd(crc, data, dataLen, table, constants, bconstants, t0, t1, t2, t3, t4);
3325 
3326       BLOCK_COMMENT("return");
3327       __ mr_if_needed(R3_RET, crc);      // Updated crc is function result. No copying required (R3_ARG1 == R3_RET).
3328       __ blr();
3329 
3330       BLOCK_COMMENT("} Stub body");
3331     } else
3332 #endif
3333     {
3334       const Register t0      = R2;
3335       const Register t1      = R7;
3336       const Register t2      = R8;
3337       const Register t3      = R9;
3338       const Register tc0     = R10;
3339       const Register tc1     = R11;
3340       const Register tc2     = R12;
3341 
3342       BLOCK_COMMENT("Stub body {");
3343       assert_different_registers(crc, data, dataLen, table);
3344 
3345       StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
3346 
3347       __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, table);
3348 
3349       BLOCK_COMMENT("return");
3350       __ mr_if_needed(R3_RET, crc);      // Updated crc is function result. No copying required (R3_ARG1 == R3_RET).
3351       __ blr();
3352 
3353       BLOCK_COMMENT("} Stub body");
3354     }
3355 
3356     return start;
3357   }
3358 
3359   // Initialization
3360   void generate_initial() {
3361     // Generates all stubs and initializes the entry points
3362 
3363     // Entry points that exist in all platforms.
3364     // Note: This is code that could be shared among different platforms - however the
3365     // benefit seems to be smaller than the disadvantage of having a
3366     // much more complicated generator structure. See also comment in
3367     // stubRoutines.hpp.
3368 
3369     StubRoutines::_forward_exception_entry          = generate_forward_exception();
3370     StubRoutines::_call_stub_entry                  = generate_call_stub(StubRoutines::_call_stub_return_address);
3371     StubRoutines::_catch_exception_entry            = generate_catch_exception();
3372 
3373     // Build this early so it's available for the interpreter.
3374     StubRoutines::_throw_StackOverflowError_entry   =
3375       generate_throw_exception("StackOverflowError throw_exception",
3376                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
3377     StubRoutines::_throw_delayed_StackOverflowError_entry =
3378       generate_throw_exception("delayed StackOverflowError throw_exception",
3379                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError), false);
3380 
3381     // CRC32 Intrinsics.
3382     if (UseCRC32Intrinsics) {
3383       StubRoutines::_crc_table_adr    = (address)StubRoutines::ppc64::_crc_table;
3384       StubRoutines::_updateBytesCRC32 = generate_CRC32_updateBytes("CRC32_updateBytes");
3385     }
3386   }
3387 
3388   void generate_all() {
3389     // Generates all stubs and initializes the entry points
3390 
3391     // These entry points require SharedInfo::stack0 to be set up in
3392     // non-core builds
3393     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
3394     // Handle IncompatibleClassChangeError in itable stubs.
3395     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
3396     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
3397 
3398     // support for verify_oop (must happen after universe_init)
3399     StubRoutines::_verify_oop_subroutine_entry             = generate_verify_oop();
3400 
3401     // arraycopy stubs used by compilers
3402     generate_arraycopy_stubs();
3403 
3404     // Safefetch stubs.
3405     generate_safefetch("SafeFetch32", sizeof(int),     &StubRoutines::_safefetch32_entry,
3406                                                        &StubRoutines::_safefetch32_fault_pc,
3407                                                        &StubRoutines::_safefetch32_continuation_pc);
3408     generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
3409                                                        &StubRoutines::_safefetchN_fault_pc,
3410                                                        &StubRoutines::_safefetchN_continuation_pc);
3411 
3412 #ifdef COMPILER2
3413     if (UseMultiplyToLenIntrinsic) {
3414       StubRoutines::_multiplyToLen = generate_multiplyToLen();
3415     }
3416 #endif
3417 
3418     if (UseMontgomeryMultiplyIntrinsic) {
3419       StubRoutines::_montgomeryMultiply
3420         = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
3421     }
3422     if (UseMontgomerySquareIntrinsic) {
3423       StubRoutines::_montgomerySquare
3424         = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
3425     }
3426 
3427     if (UseAESIntrinsics) {
3428       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3429       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3430     }
3431 
3432   }
3433 
3434  public:
3435   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3436     // replace the standard masm with a special one:
3437     _masm = new MacroAssembler(code);
3438     if (all) {
3439       generate_all();
3440     } else {
3441       generate_initial();
3442     }
3443   }
3444 };
3445 
3446 void StubGenerator_generate(CodeBuffer* code, bool all) {
3447   StubGenerator g(code, all);
3448 }