1 /*
2 * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
27 #define CPU_PPC_VM_ASSEMBLER_PPC_HPP
28
29 #include "asm/register.hpp"
30
31 // Address is an abstraction used to represent a memory location
32 // as used in assembler instructions.
33 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
34 class Address VALUE_OBJ_CLASS_SPEC {
35 private:
36 Register _base; // Base register.
37 Register _index; // Index register.
38 intptr_t _disp; // Displacement.
39
40 public:
41 Address(Register b, Register i, address d = 0)
42 : _base(b), _index(i), _disp((intptr_t)d) {
43 assert(i == noreg || d == 0, "can't have both");
44 }
45
46 Address(Register b, address d = 0)
47 : _base(b), _index(noreg), _disp((intptr_t)d) {}
48
49 Address(Register b, intptr_t d)
50 : _base(b), _index(noreg), _disp(d) {}
51
52 Address(Register b, RegisterOrConstant roc)
53 : _base(b), _index(noreg), _disp(0) {
54 if (roc.is_constant()) _disp = roc.as_constant(); else _index = roc.as_register();
55 }
56
57 Address()
58 : _base(noreg), _index(noreg), _disp(0) {}
59
60 // accessors
61 Register base() const { return _base; }
62 Register index() const { return _index; }
63 int disp() const { return (int)_disp; }
64 bool is_const() const { return _base == noreg && _index == noreg; }
65 };
66
67 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
68 private:
69 address _address;
70 RelocationHolder _rspec;
71
72 RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
73 switch (rtype) {
74 case relocInfo::external_word_type:
75 return external_word_Relocation::spec(addr);
76 case relocInfo::internal_word_type:
77 return internal_word_Relocation::spec(addr);
78 case relocInfo::opt_virtual_call_type:
79 return opt_virtual_call_Relocation::spec();
80 case relocInfo::static_call_type:
81 return static_call_Relocation::spec();
82 case relocInfo::runtime_call_type:
83 return runtime_call_Relocation::spec();
84 case relocInfo::none:
85 return RelocationHolder();
86 default:
87 ShouldNotReachHere();
88 return RelocationHolder();
89 }
90 }
91
92 protected:
93 // creation
94 AddressLiteral() : _address(NULL), _rspec(NULL) {}
95
96 public:
97 AddressLiteral(address addr, RelocationHolder const& rspec)
98 : _address(addr),
99 _rspec(rspec) {}
100
101 AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
102 : _address((address) addr),
103 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
104
105 AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
106 : _address((address) addr),
107 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
108
109 intptr_t value() const { return (intptr_t) _address; }
110
111 const RelocationHolder& rspec() const { return _rspec; }
112 };
113
114 // Argument is an abstraction used to represent an outgoing
115 // actual argument or an incoming formal parameter, whether
116 // it resides in memory or in a register, in a manner consistent
117 // with the PPC Application Binary Interface, or ABI. This is
118 // often referred to as the native or C calling convention.
119
120 class Argument VALUE_OBJ_CLASS_SPEC {
121 private:
122 int _number; // The number of the argument.
123 public:
124 enum {
125 // Only 8 registers may contain integer parameters.
126 n_register_parameters = 8,
127 // Can have up to 8 floating registers.
128 n_float_register_parameters = 8,
129
130 // PPC C calling conventions.
131 // The first eight arguments are passed in int regs if they are int.
132 n_int_register_parameters_c = 8,
133 // The first thirteen float arguments are passed in float regs.
134 n_float_register_parameters_c = 13,
135 // Only the first 8 parameters are not placed on the stack. Aix disassembly
136 // shows that xlC places all float args after argument 8 on the stack AND
137 // in a register. This is not documented, but we follow this convention, too.
138 n_regs_not_on_stack_c = 8,
139 };
140 // creation
141 Argument(int number) : _number(number) {}
142
143 int number() const { return _number; }
144
145 // Locating register-based arguments:
146 bool is_register() const { return _number < n_register_parameters; }
147
148 Register as_register() const {
149 assert(is_register(), "must be a register argument");
150 return as_Register(number() + R3_ARG1->encoding());
151 }
152 };
153
154 #if !defined(ABI_ELFv2)
155 // A ppc64 function descriptor.
156 struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
157 private:
158 address _entry;
159 address _toc;
160 address _env;
161
162 public:
163 inline address entry() const { return _entry; }
164 inline address toc() const { return _toc; }
165 inline address env() const { return _env; }
166
167 inline void set_entry(address entry) { _entry = entry; }
168 inline void set_toc( address toc) { _toc = toc; }
169 inline void set_env( address env) { _env = env; }
170
171 inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
172 inline static ByteSize toc_offset() { return byte_offset_of(FunctionDescriptor, _toc); }
173 inline static ByteSize env_offset() { return byte_offset_of(FunctionDescriptor, _env); }
174
175 // Friend functions can be called without loading toc and env.
176 enum {
177 friend_toc = 0xcafe,
178 friend_env = 0xc0de
179 };
180
181 inline bool is_friend_function() const {
182 return (toc() == (address) friend_toc) && (env() == (address) friend_env);
183 }
184
185 // Constructor for stack-allocated instances.
186 FunctionDescriptor() {
187 _entry = (address) 0xbad;
188 _toc = (address) 0xbad;
189 _env = (address) 0xbad;
190 }
191 };
192 #endif
193
194
195 // The PPC Assembler: Pure assembler doing NO optimizations on the
196 // instruction level; i.e., what you write is what you get. The
197 // Assembler is generating code into a CodeBuffer.
198
199 class Assembler : public AbstractAssembler {
200 protected:
201 // Displacement routines
202 static int patched_branch(int dest_pos, int inst, int inst_pos);
203 static int branch_destination(int inst, int pos);
204
205 friend class AbstractAssembler;
206
207 // Code patchers need various routines like inv_wdisp()
208 friend class NativeInstruction;
209 friend class NativeGeneralJump;
210 friend class Relocation;
211
212 public:
213
214 enum shifts {
215 XO_21_29_SHIFT = 2,
216 XO_21_30_SHIFT = 1,
217 XO_27_29_SHIFT = 2,
218 XO_30_31_SHIFT = 0,
219 SPR_5_9_SHIFT = 11u, // SPR_5_9 field in bits 11 -- 15
220 SPR_0_4_SHIFT = 16u, // SPR_0_4 field in bits 16 -- 20
221 RS_SHIFT = 21u, // RS field in bits 21 -- 25
222 OPCODE_SHIFT = 26u, // opcode in bits 26 -- 31
223 };
224
225 enum opcdxos_masks {
226 XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
227 ADDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
228 ADDIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
229 BXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
230 BCXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
231 // trap instructions
232 TDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
233 TWI_OPCODE_MASK = (63u << OPCODE_SHIFT),
234 TD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
235 TW_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
236 LD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
237 STD_OPCODE_MASK = LD_OPCODE_MASK,
238 STDU_OPCODE_MASK = STD_OPCODE_MASK,
239 STDX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
240 STDUX_OPCODE_MASK = STDX_OPCODE_MASK,
241 STW_OPCODE_MASK = (63u << OPCODE_SHIFT),
242 STWU_OPCODE_MASK = STW_OPCODE_MASK,
243 STWX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
244 STWUX_OPCODE_MASK = STWX_OPCODE_MASK,
245 MTCTR_OPCODE_MASK = ~(31u << RS_SHIFT),
246 ORI_OPCODE_MASK = (63u << OPCODE_SHIFT),
247 ORIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
248 RLDICR_OPCODE_MASK = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
249 };
250
251 enum opcdxos {
252 ADD_OPCODE = (31u << OPCODE_SHIFT | 266u << 1),
253 ADDC_OPCODE = (31u << OPCODE_SHIFT | 10u << 1),
254 ADDI_OPCODE = (14u << OPCODE_SHIFT),
255 ADDIS_OPCODE = (15u << OPCODE_SHIFT),
256 ADDIC__OPCODE = (13u << OPCODE_SHIFT),
257 ADDE_OPCODE = (31u << OPCODE_SHIFT | 138u << 1),
258 ADDME_OPCODE = (31u << OPCODE_SHIFT | 234u << 1),
259 ADDZE_OPCODE = (31u << OPCODE_SHIFT | 202u << 1),
260 SUBF_OPCODE = (31u << OPCODE_SHIFT | 40u << 1),
261 SUBFC_OPCODE = (31u << OPCODE_SHIFT | 8u << 1),
262 SUBFE_OPCODE = (31u << OPCODE_SHIFT | 136u << 1),
263 SUBFIC_OPCODE = (8u << OPCODE_SHIFT),
264 SUBFME_OPCODE = (31u << OPCODE_SHIFT | 232u << 1),
265 SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
266 DIVW_OPCODE = (31u << OPCODE_SHIFT | 491u << 1),
267 MULLW_OPCODE = (31u << OPCODE_SHIFT | 235u << 1),
268 MULHW_OPCODE = (31u << OPCODE_SHIFT | 75u << 1),
269 MULHWU_OPCODE = (31u << OPCODE_SHIFT | 11u << 1),
270 MULLI_OPCODE = (7u << OPCODE_SHIFT),
271 AND_OPCODE = (31u << OPCODE_SHIFT | 28u << 1),
272 ANDI_OPCODE = (28u << OPCODE_SHIFT),
273 ANDIS_OPCODE = (29u << OPCODE_SHIFT),
274 ANDC_OPCODE = (31u << OPCODE_SHIFT | 60u << 1),
275 ORC_OPCODE = (31u << OPCODE_SHIFT | 412u << 1),
276 OR_OPCODE = (31u << OPCODE_SHIFT | 444u << 1),
277 ORI_OPCODE = (24u << OPCODE_SHIFT),
278 ORIS_OPCODE = (25u << OPCODE_SHIFT),
279 XOR_OPCODE = (31u << OPCODE_SHIFT | 316u << 1),
280 XORI_OPCODE = (26u << OPCODE_SHIFT),
281 XORIS_OPCODE = (27u << OPCODE_SHIFT),
282
283 NEG_OPCODE = (31u << OPCODE_SHIFT | 104u << 1),
284
285 RLWINM_OPCODE = (21u << OPCODE_SHIFT),
286 CLRRWI_OPCODE = RLWINM_OPCODE,
287 CLRLWI_OPCODE = RLWINM_OPCODE,
288
289 RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
290
291 SLW_OPCODE = (31u << OPCODE_SHIFT | 24u << 1),
292 SLWI_OPCODE = RLWINM_OPCODE,
293 SRW_OPCODE = (31u << OPCODE_SHIFT | 536u << 1),
294 SRWI_OPCODE = RLWINM_OPCODE,
295 SRAW_OPCODE = (31u << OPCODE_SHIFT | 792u << 1),
296 SRAWI_OPCODE = (31u << OPCODE_SHIFT | 824u << 1),
297
298 CMP_OPCODE = (31u << OPCODE_SHIFT | 0u << 1),
299 CMPI_OPCODE = (11u << OPCODE_SHIFT),
300 CMPL_OPCODE = (31u << OPCODE_SHIFT | 32u << 1),
301 CMPLI_OPCODE = (10u << OPCODE_SHIFT),
302
303 ISEL_OPCODE = (31u << OPCODE_SHIFT | 15u << 1),
304
305 // Special purpose registers
306 MTSPR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1),
307 MFSPR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1),
308
309 MTXER_OPCODE = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
310 MFXER_OPCODE = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
311
312 MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
313 MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
314
315 MTLR_OPCODE = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
316 MFLR_OPCODE = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
317
318 MTCTR_OPCODE = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
319 MFCTR_OPCODE = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
320
321 // Attention: Higher and lower half are inserted in reversed order.
322 MTTFHAR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
323 MFTFHAR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
324 MTTFIAR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
325 MFTFIAR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
326 MTTEXASR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
327 MFTEXASR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
328 MTTEXASRU_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
329 MFTEXASRU_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
330
331 MTVRSAVE_OPCODE = (MTSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
332 MFVRSAVE_OPCODE = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
333
334 MFTB_OPCODE = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 12 << SPR_0_4_SHIFT),
335
336 MTCRF_OPCODE = (31u << OPCODE_SHIFT | 144u << 1),
337 MFCR_OPCODE = (31u << OPCODE_SHIFT | 19u << 1),
338 MCRF_OPCODE = (19u << OPCODE_SHIFT | 0u << 1),
339
340 // condition register logic instructions
341 CRAND_OPCODE = (19u << OPCODE_SHIFT | 257u << 1),
342 CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
343 CROR_OPCODE = (19u << OPCODE_SHIFT | 449u << 1),
344 CRXOR_OPCODE = (19u << OPCODE_SHIFT | 193u << 1),
345 CRNOR_OPCODE = (19u << OPCODE_SHIFT | 33u << 1),
346 CREQV_OPCODE = (19u << OPCODE_SHIFT | 289u << 1),
347 CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
348 CRORC_OPCODE = (19u << OPCODE_SHIFT | 417u << 1),
349
350 BCLR_OPCODE = (19u << OPCODE_SHIFT | 16u << 1),
351 BXX_OPCODE = (18u << OPCODE_SHIFT),
352 BCXX_OPCODE = (16u << OPCODE_SHIFT),
353
354 // CTR-related opcodes
355 BCCTR_OPCODE = (19u << OPCODE_SHIFT | 528u << 1),
356
357 LWZ_OPCODE = (32u << OPCODE_SHIFT),
358 LWZX_OPCODE = (31u << OPCODE_SHIFT | 23u << 1),
359 LWZU_OPCODE = (33u << OPCODE_SHIFT),
360 LWBRX_OPCODE = (31u << OPCODE_SHIFT | 534 << 1),
361
362 LHA_OPCODE = (42u << OPCODE_SHIFT),
363 LHAX_OPCODE = (31u << OPCODE_SHIFT | 343u << 1),
364 LHAU_OPCODE = (43u << OPCODE_SHIFT),
365
366 LHZ_OPCODE = (40u << OPCODE_SHIFT),
367 LHZX_OPCODE = (31u << OPCODE_SHIFT | 279u << 1),
368 LHZU_OPCODE = (41u << OPCODE_SHIFT),
369 LHBRX_OPCODE = (31u << OPCODE_SHIFT | 790 << 1),
370
371 LBZ_OPCODE = (34u << OPCODE_SHIFT),
372 LBZX_OPCODE = (31u << OPCODE_SHIFT | 87u << 1),
373 LBZU_OPCODE = (35u << OPCODE_SHIFT),
374
375 STW_OPCODE = (36u << OPCODE_SHIFT),
376 STWX_OPCODE = (31u << OPCODE_SHIFT | 151u << 1),
377 STWU_OPCODE = (37u << OPCODE_SHIFT),
378 STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
379 STWBRX_OPCODE = (31u << OPCODE_SHIFT | 662u << 1),
380
381 STH_OPCODE = (44u << OPCODE_SHIFT),
382 STHX_OPCODE = (31u << OPCODE_SHIFT | 407u << 1),
383 STHU_OPCODE = (45u << OPCODE_SHIFT),
384 STHBRX_OPCODE = (31u << OPCODE_SHIFT | 918u << 1),
385
386 STB_OPCODE = (38u << OPCODE_SHIFT),
387 STBX_OPCODE = (31u << OPCODE_SHIFT | 215u << 1),
388 STBU_OPCODE = (39u << OPCODE_SHIFT),
389
390 EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
391 EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
392 EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1), // X-FORM
393
394 // 32 bit opcode encodings
395
396 LWA_OPCODE = (58u << OPCODE_SHIFT | 2u << XO_30_31_SHIFT), // DS-FORM
397 LWAX_OPCODE = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
398
399 CNTLZW_OPCODE = (31u << OPCODE_SHIFT | 26u << XO_21_30_SHIFT), // X-FORM
400
401 // 64 bit opcode encodings
402
403 LD_OPCODE = (58u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
404 LDU_OPCODE = (58u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
405 LDX_OPCODE = (31u << OPCODE_SHIFT | 21u << XO_21_30_SHIFT), // X-FORM
406 LDBRX_OPCODE = (31u << OPCODE_SHIFT | 532u << 1), // X-FORM
407
408 STD_OPCODE = (62u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
409 STDU_OPCODE = (62u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
410 STDUX_OPCODE = (31u << OPCODE_SHIFT | 181u << 1), // X-FORM
411 STDX_OPCODE = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
412 STDBRX_OPCODE = (31u << OPCODE_SHIFT | 660u << 1), // X-FORM
413
414 RLDICR_OPCODE = (30u << OPCODE_SHIFT | 1u << XO_27_29_SHIFT), // MD-FORM
415 RLDICL_OPCODE = (30u << OPCODE_SHIFT | 0u << XO_27_29_SHIFT), // MD-FORM
416 RLDIC_OPCODE = (30u << OPCODE_SHIFT | 2u << XO_27_29_SHIFT), // MD-FORM
417 RLDIMI_OPCODE = (30u << OPCODE_SHIFT | 3u << XO_27_29_SHIFT), // MD-FORM
418
419 SRADI_OPCODE = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
420
421 SLD_OPCODE = (31u << OPCODE_SHIFT | 27u << 1), // X-FORM
422 SRD_OPCODE = (31u << OPCODE_SHIFT | 539u << 1), // X-FORM
423 SRAD_OPCODE = (31u << OPCODE_SHIFT | 794u << 1), // X-FORM
424
425 MULLD_OPCODE = (31u << OPCODE_SHIFT | 233u << 1), // XO-FORM
426 MULHD_OPCODE = (31u << OPCODE_SHIFT | 73u << 1), // XO-FORM
427 MULHDU_OPCODE = (31u << OPCODE_SHIFT | 9u << 1), // XO-FORM
428 DIVD_OPCODE = (31u << OPCODE_SHIFT | 489u << 1), // XO-FORM
429
430 CNTLZD_OPCODE = (31u << OPCODE_SHIFT | 58u << XO_21_30_SHIFT), // X-FORM
431 NAND_OPCODE = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
432 NOR_OPCODE = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
433
434
435 // opcodes only used for floating arithmetic
436 FADD_OPCODE = (63u << OPCODE_SHIFT | 21u << 1),
437 FADDS_OPCODE = (59u << OPCODE_SHIFT | 21u << 1),
438 FCMPU_OPCODE = (63u << OPCODE_SHIFT | 00u << 1),
439 FDIV_OPCODE = (63u << OPCODE_SHIFT | 18u << 1),
440 FDIVS_OPCODE = (59u << OPCODE_SHIFT | 18u << 1),
441 FMR_OPCODE = (63u << OPCODE_SHIFT | 72u << 1),
442 // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
443 // on Power7. Do not use.
444 // MFFGPR_OPCODE = (31u << OPCODE_SHIFT | 607u << 1),
445 // MFTGPR_OPCODE = (31u << OPCODE_SHIFT | 735u << 1),
446 CMPB_OPCODE = (31u << OPCODE_SHIFT | 508 << 1),
447 POPCNTB_OPCODE = (31u << OPCODE_SHIFT | 122 << 1),
448 POPCNTW_OPCODE = (31u << OPCODE_SHIFT | 378 << 1),
449 POPCNTD_OPCODE = (31u << OPCODE_SHIFT | 506 << 1),
450 FABS_OPCODE = (63u << OPCODE_SHIFT | 264u << 1),
451 FNABS_OPCODE = (63u << OPCODE_SHIFT | 136u << 1),
452 FMUL_OPCODE = (63u << OPCODE_SHIFT | 25u << 1),
453 FMULS_OPCODE = (59u << OPCODE_SHIFT | 25u << 1),
454 FNEG_OPCODE = (63u << OPCODE_SHIFT | 40u << 1),
455 FSUB_OPCODE = (63u << OPCODE_SHIFT | 20u << 1),
456 FSUBS_OPCODE = (59u << OPCODE_SHIFT | 20u << 1),
457
458 // PPC64-internal FPU conversion opcodes
459 FCFID_OPCODE = (63u << OPCODE_SHIFT | 846u << 1),
460 FCFIDS_OPCODE = (59u << OPCODE_SHIFT | 846u << 1),
461 FCTID_OPCODE = (63u << OPCODE_SHIFT | 814u << 1),
462 FCTIDZ_OPCODE = (63u << OPCODE_SHIFT | 815u << 1),
463 FCTIW_OPCODE = (63u << OPCODE_SHIFT | 14u << 1),
464 FCTIWZ_OPCODE = (63u << OPCODE_SHIFT | 15u << 1),
465 FRSP_OPCODE = (63u << OPCODE_SHIFT | 12u << 1),
466
467 // Fused multiply-accumulate instructions.
468 FMADD_OPCODE = (63u << OPCODE_SHIFT | 29u << 1),
469 FMADDS_OPCODE = (59u << OPCODE_SHIFT | 29u << 1),
470 FMSUB_OPCODE = (63u << OPCODE_SHIFT | 28u << 1),
471 FMSUBS_OPCODE = (59u << OPCODE_SHIFT | 28u << 1),
472 FNMADD_OPCODE = (63u << OPCODE_SHIFT | 31u << 1),
473 FNMADDS_OPCODE = (59u << OPCODE_SHIFT | 31u << 1),
474 FNMSUB_OPCODE = (63u << OPCODE_SHIFT | 30u << 1),
475 FNMSUBS_OPCODE = (59u << OPCODE_SHIFT | 30u << 1),
476
477 LFD_OPCODE = (50u << OPCODE_SHIFT | 00u << 1),
478 LFDU_OPCODE = (51u << OPCODE_SHIFT | 00u << 1),
479 LFDX_OPCODE = (31u << OPCODE_SHIFT | 599u << 1),
480 LFS_OPCODE = (48u << OPCODE_SHIFT | 00u << 1),
481 LFSU_OPCODE = (49u << OPCODE_SHIFT | 00u << 1),
482 LFSX_OPCODE = (31u << OPCODE_SHIFT | 535u << 1),
483
484 STFD_OPCODE = (54u << OPCODE_SHIFT | 00u << 1),
485 STFDU_OPCODE = (55u << OPCODE_SHIFT | 00u << 1),
486 STFDX_OPCODE = (31u << OPCODE_SHIFT | 727u << 1),
487 STFS_OPCODE = (52u << OPCODE_SHIFT | 00u << 1),
488 STFSU_OPCODE = (53u << OPCODE_SHIFT | 00u << 1),
489 STFSX_OPCODE = (31u << OPCODE_SHIFT | 663u << 1),
490
491 FSQRT_OPCODE = (63u << OPCODE_SHIFT | 22u << 1), // A-FORM
492 FSQRTS_OPCODE = (59u << OPCODE_SHIFT | 22u << 1), // A-FORM
493
494 // Vector instruction support for >= Power6
495 // Vector Storage Access
496 LVEBX_OPCODE = (31u << OPCODE_SHIFT | 7u << 1),
497 LVEHX_OPCODE = (31u << OPCODE_SHIFT | 39u << 1),
498 LVEWX_OPCODE = (31u << OPCODE_SHIFT | 71u << 1),
499 LVX_OPCODE = (31u << OPCODE_SHIFT | 103u << 1),
500 LVXL_OPCODE = (31u << OPCODE_SHIFT | 359u << 1),
501 STVEBX_OPCODE = (31u << OPCODE_SHIFT | 135u << 1),
502 STVEHX_OPCODE = (31u << OPCODE_SHIFT | 167u << 1),
503 STVEWX_OPCODE = (31u << OPCODE_SHIFT | 199u << 1),
504 STVX_OPCODE = (31u << OPCODE_SHIFT | 231u << 1),
505 STVXL_OPCODE = (31u << OPCODE_SHIFT | 487u << 1),
506 LVSL_OPCODE = (31u << OPCODE_SHIFT | 6u << 1),
507 LVSR_OPCODE = (31u << OPCODE_SHIFT | 38u << 1),
508
509 // Vector-Scalar (VSX) instruction support.
510 LXVD2X_OPCODE = (31u << OPCODE_SHIFT | 844u << 1),
511 STXVD2X_OPCODE = (31u << OPCODE_SHIFT | 972u << 1),
512 MTVSRD_OPCODE = (31u << OPCODE_SHIFT | 179u << 1),
513 MFVSRD_OPCODE = (31u << OPCODE_SHIFT | 51u << 1),
514 MTVSRWA_OPCODE = (31u << OPCODE_SHIFT | 211u << 1),
515
516 // Vector Permute and Formatting
517 VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ),
518 VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ),
519 VPKSWSS_OPCODE = (4u << OPCODE_SHIFT | 462u ),
520 VPKSHUS_OPCODE = (4u << OPCODE_SHIFT | 270u ),
521 VPKSWUS_OPCODE = (4u << OPCODE_SHIFT | 334u ),
522 VPKUHUM_OPCODE = (4u << OPCODE_SHIFT | 14u ),
523 VPKUWUM_OPCODE = (4u << OPCODE_SHIFT | 78u ),
524 VPKUHUS_OPCODE = (4u << OPCODE_SHIFT | 142u ),
525 VPKUWUS_OPCODE = (4u << OPCODE_SHIFT | 206u ),
526 VUPKHPX_OPCODE = (4u << OPCODE_SHIFT | 846u ),
527 VUPKHSB_OPCODE = (4u << OPCODE_SHIFT | 526u ),
528 VUPKHSH_OPCODE = (4u << OPCODE_SHIFT | 590u ),
529 VUPKLPX_OPCODE = (4u << OPCODE_SHIFT | 974u ),
530 VUPKLSB_OPCODE = (4u << OPCODE_SHIFT | 654u ),
531 VUPKLSH_OPCODE = (4u << OPCODE_SHIFT | 718u ),
532
533 VMRGHB_OPCODE = (4u << OPCODE_SHIFT | 12u ),
534 VMRGHW_OPCODE = (4u << OPCODE_SHIFT | 140u ),
535 VMRGHH_OPCODE = (4u << OPCODE_SHIFT | 76u ),
536 VMRGLB_OPCODE = (4u << OPCODE_SHIFT | 268u ),
537 VMRGLW_OPCODE = (4u << OPCODE_SHIFT | 396u ),
538 VMRGLH_OPCODE = (4u << OPCODE_SHIFT | 332u ),
539
540 VSPLT_OPCODE = (4u << OPCODE_SHIFT | 524u ),
541 VSPLTH_OPCODE = (4u << OPCODE_SHIFT | 588u ),
542 VSPLTW_OPCODE = (4u << OPCODE_SHIFT | 652u ),
543 VSPLTISB_OPCODE= (4u << OPCODE_SHIFT | 780u ),
544 VSPLTISH_OPCODE= (4u << OPCODE_SHIFT | 844u ),
545 VSPLTISW_OPCODE= (4u << OPCODE_SHIFT | 908u ),
546
547 VPERM_OPCODE = (4u << OPCODE_SHIFT | 43u ),
548 VSEL_OPCODE = (4u << OPCODE_SHIFT | 42u ),
549
550 VSL_OPCODE = (4u << OPCODE_SHIFT | 452u ),
551 VSLDOI_OPCODE = (4u << OPCODE_SHIFT | 44u ),
552 VSLO_OPCODE = (4u << OPCODE_SHIFT | 1036u ),
553 VSR_OPCODE = (4u << OPCODE_SHIFT | 708u ),
554 VSRO_OPCODE = (4u << OPCODE_SHIFT | 1100u ),
555
556 // Vector Integer
557 VADDCUW_OPCODE = (4u << OPCODE_SHIFT | 384u ),
558 VADDSHS_OPCODE = (4u << OPCODE_SHIFT | 832u ),
559 VADDSBS_OPCODE = (4u << OPCODE_SHIFT | 768u ),
560 VADDSWS_OPCODE = (4u << OPCODE_SHIFT | 896u ),
561 VADDUBM_OPCODE = (4u << OPCODE_SHIFT | 0u ),
562 VADDUWM_OPCODE = (4u << OPCODE_SHIFT | 128u ),
563 VADDUHM_OPCODE = (4u << OPCODE_SHIFT | 64u ),
564 VADDUBS_OPCODE = (4u << OPCODE_SHIFT | 512u ),
565 VADDUWS_OPCODE = (4u << OPCODE_SHIFT | 640u ),
566 VADDUHS_OPCODE = (4u << OPCODE_SHIFT | 576u ),
567 VSUBCUW_OPCODE = (4u << OPCODE_SHIFT | 1408u ),
568 VSUBSHS_OPCODE = (4u << OPCODE_SHIFT | 1856u ),
569 VSUBSBS_OPCODE = (4u << OPCODE_SHIFT | 1792u ),
570 VSUBSWS_OPCODE = (4u << OPCODE_SHIFT | 1920u ),
571 VSUBUBM_OPCODE = (4u << OPCODE_SHIFT | 1024u ),
572 VSUBUWM_OPCODE = (4u << OPCODE_SHIFT | 1152u ),
573 VSUBUHM_OPCODE = (4u << OPCODE_SHIFT | 1088u ),
574 VSUBUBS_OPCODE = (4u << OPCODE_SHIFT | 1536u ),
575 VSUBUWS_OPCODE = (4u << OPCODE_SHIFT | 1664u ),
576 VSUBUHS_OPCODE = (4u << OPCODE_SHIFT | 1600u ),
577
578 VMULESB_OPCODE = (4u << OPCODE_SHIFT | 776u ),
579 VMULEUB_OPCODE = (4u << OPCODE_SHIFT | 520u ),
580 VMULESH_OPCODE = (4u << OPCODE_SHIFT | 840u ),
581 VMULEUH_OPCODE = (4u << OPCODE_SHIFT | 584u ),
582 VMULOSB_OPCODE = (4u << OPCODE_SHIFT | 264u ),
583 VMULOUB_OPCODE = (4u << OPCODE_SHIFT | 8u ),
584 VMULOSH_OPCODE = (4u << OPCODE_SHIFT | 328u ),
585 VMULOUH_OPCODE = (4u << OPCODE_SHIFT | 72u ),
586 VMHADDSHS_OPCODE=(4u << OPCODE_SHIFT | 32u ),
587 VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT | 33u ),
588 VMLADDUHM_OPCODE=(4u << OPCODE_SHIFT | 34u ),
589 VMSUBUHM_OPCODE= (4u << OPCODE_SHIFT | 36u ),
590 VMSUMMBM_OPCODE= (4u << OPCODE_SHIFT | 37u ),
591 VMSUMSHM_OPCODE= (4u << OPCODE_SHIFT | 40u ),
592 VMSUMSHS_OPCODE= (4u << OPCODE_SHIFT | 41u ),
593 VMSUMUHM_OPCODE= (4u << OPCODE_SHIFT | 38u ),
594 VMSUMUHS_OPCODE= (4u << OPCODE_SHIFT | 39u ),
595
596 VSUMSWS_OPCODE = (4u << OPCODE_SHIFT | 1928u ),
597 VSUM2SWS_OPCODE= (4u << OPCODE_SHIFT | 1672u ),
598 VSUM4SBS_OPCODE= (4u << OPCODE_SHIFT | 1800u ),
599 VSUM4UBS_OPCODE= (4u << OPCODE_SHIFT | 1544u ),
600 VSUM4SHS_OPCODE= (4u << OPCODE_SHIFT | 1608u ),
601
602 VAVGSB_OPCODE = (4u << OPCODE_SHIFT | 1282u ),
603 VAVGSW_OPCODE = (4u << OPCODE_SHIFT | 1410u ),
604 VAVGSH_OPCODE = (4u << OPCODE_SHIFT | 1346u ),
605 VAVGUB_OPCODE = (4u << OPCODE_SHIFT | 1026u ),
606 VAVGUW_OPCODE = (4u << OPCODE_SHIFT | 1154u ),
607 VAVGUH_OPCODE = (4u << OPCODE_SHIFT | 1090u ),
608
609 VMAXSB_OPCODE = (4u << OPCODE_SHIFT | 258u ),
610 VMAXSW_OPCODE = (4u << OPCODE_SHIFT | 386u ),
611 VMAXSH_OPCODE = (4u << OPCODE_SHIFT | 322u ),
612 VMAXUB_OPCODE = (4u << OPCODE_SHIFT | 2u ),
613 VMAXUW_OPCODE = (4u << OPCODE_SHIFT | 130u ),
614 VMAXUH_OPCODE = (4u << OPCODE_SHIFT | 66u ),
615 VMINSB_OPCODE = (4u << OPCODE_SHIFT | 770u ),
616 VMINSW_OPCODE = (4u << OPCODE_SHIFT | 898u ),
617 VMINSH_OPCODE = (4u << OPCODE_SHIFT | 834u ),
618 VMINUB_OPCODE = (4u << OPCODE_SHIFT | 514u ),
619 VMINUW_OPCODE = (4u << OPCODE_SHIFT | 642u ),
620 VMINUH_OPCODE = (4u << OPCODE_SHIFT | 578u ),
621
622 VCMPEQUB_OPCODE= (4u << OPCODE_SHIFT | 6u ),
623 VCMPEQUH_OPCODE= (4u << OPCODE_SHIFT | 70u ),
624 VCMPEQUW_OPCODE= (4u << OPCODE_SHIFT | 134u ),
625 VCMPGTSH_OPCODE= (4u << OPCODE_SHIFT | 838u ),
626 VCMPGTSB_OPCODE= (4u << OPCODE_SHIFT | 774u ),
627 VCMPGTSW_OPCODE= (4u << OPCODE_SHIFT | 902u ),
628 VCMPGTUB_OPCODE= (4u << OPCODE_SHIFT | 518u ),
629 VCMPGTUH_OPCODE= (4u << OPCODE_SHIFT | 582u ),
630 VCMPGTUW_OPCODE= (4u << OPCODE_SHIFT | 646u ),
631
632 VAND_OPCODE = (4u << OPCODE_SHIFT | 1028u ),
633 VANDC_OPCODE = (4u << OPCODE_SHIFT | 1092u ),
634 VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ),
635 VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ),
636 VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ),
637 VRLD_OPCODE = (4u << OPCODE_SHIFT | 196u ),
638 VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ),
639 VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ),
640 VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ),
641 VSLB_OPCODE = (4u << OPCODE_SHIFT | 260u ),
642 VSKW_OPCODE = (4u << OPCODE_SHIFT | 388u ),
643 VSLH_OPCODE = (4u << OPCODE_SHIFT | 324u ),
644 VSRB_OPCODE = (4u << OPCODE_SHIFT | 516u ),
645 VSRW_OPCODE = (4u << OPCODE_SHIFT | 644u ),
646 VSRH_OPCODE = (4u << OPCODE_SHIFT | 580u ),
647 VSRAB_OPCODE = (4u << OPCODE_SHIFT | 772u ),
648 VSRAW_OPCODE = (4u << OPCODE_SHIFT | 900u ),
649 VSRAH_OPCODE = (4u << OPCODE_SHIFT | 836u ),
650
651 // Vector Floating-Point
652 // not implemented yet
653
654 // Vector Status and Control
655 MTVSCR_OPCODE = (4u << OPCODE_SHIFT | 1604u ),
656 MFVSCR_OPCODE = (4u << OPCODE_SHIFT | 1540u ),
657
658 // AES (introduced with Power 8)
659 VCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1288u),
660 VCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1289u),
661 VNCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1352u),
662 VNCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1353u),
663 VSBOX_OPCODE = (4u << OPCODE_SHIFT | 1480u),
664
665 // SHA (introduced with Power 8)
666 VSHASIGMAD_OPCODE = (4u << OPCODE_SHIFT | 1730u),
667 VSHASIGMAW_OPCODE = (4u << OPCODE_SHIFT | 1666u),
668
669 // Vector Binary Polynomial Multiplication (introduced with Power 8)
670 VPMSUMB_OPCODE = (4u << OPCODE_SHIFT | 1032u),
671 VPMSUMD_OPCODE = (4u << OPCODE_SHIFT | 1224u),
672 VPMSUMH_OPCODE = (4u << OPCODE_SHIFT | 1096u),
673 VPMSUMW_OPCODE = (4u << OPCODE_SHIFT | 1160u),
674
675 // Vector Permute and Xor (introduced with Power 8)
676 VPERMXOR_OPCODE = (4u << OPCODE_SHIFT | 45u),
677
678 // Transactional Memory instructions (introduced with Power 8)
679 TBEGIN_OPCODE = (31u << OPCODE_SHIFT | 654u << 1),
680 TEND_OPCODE = (31u << OPCODE_SHIFT | 686u << 1),
681 TABORT_OPCODE = (31u << OPCODE_SHIFT | 910u << 1),
682 TABORTWC_OPCODE = (31u << OPCODE_SHIFT | 782u << 1),
683 TABORTWCI_OPCODE = (31u << OPCODE_SHIFT | 846u << 1),
684 TABORTDC_OPCODE = (31u << OPCODE_SHIFT | 814u << 1),
685 TABORTDCI_OPCODE = (31u << OPCODE_SHIFT | 878u << 1),
686 TSR_OPCODE = (31u << OPCODE_SHIFT | 750u << 1),
687 TCHECK_OPCODE = (31u << OPCODE_SHIFT | 718u << 1),
688
689 // Icache and dcache related instructions
690 DCBA_OPCODE = (31u << OPCODE_SHIFT | 758u << 1),
691 DCBZ_OPCODE = (31u << OPCODE_SHIFT | 1014u << 1),
692 DCBST_OPCODE = (31u << OPCODE_SHIFT | 54u << 1),
693 DCBF_OPCODE = (31u << OPCODE_SHIFT | 86u << 1),
694
695 DCBT_OPCODE = (31u << OPCODE_SHIFT | 278u << 1),
696 DCBTST_OPCODE = (31u << OPCODE_SHIFT | 246u << 1),
697 ICBI_OPCODE = (31u << OPCODE_SHIFT | 982u << 1),
698
699 // Instruction synchronization
700 ISYNC_OPCODE = (19u << OPCODE_SHIFT | 150u << 1),
701 // Memory barriers
702 SYNC_OPCODE = (31u << OPCODE_SHIFT | 598u << 1),
703 EIEIO_OPCODE = (31u << OPCODE_SHIFT | 854u << 1),
704
705 // Wait instructions for polling.
706 WAIT_OPCODE = (31u << OPCODE_SHIFT | 62u << 1),
707
708 // Trap instructions
709 TDI_OPCODE = (2u << OPCODE_SHIFT),
710 TWI_OPCODE = (3u << OPCODE_SHIFT),
711 TD_OPCODE = (31u << OPCODE_SHIFT | 68u << 1),
712 TW_OPCODE = (31u << OPCODE_SHIFT | 4u << 1),
713
714 // Atomics.
715 LBARX_OPCODE = (31u << OPCODE_SHIFT | 52u << 1),
716 LHARX_OPCODE = (31u << OPCODE_SHIFT | 116u << 1),
717 LWARX_OPCODE = (31u << OPCODE_SHIFT | 20u << 1),
718 LDARX_OPCODE = (31u << OPCODE_SHIFT | 84u << 1),
719 LQARX_OPCODE = (31u << OPCODE_SHIFT | 276u << 1),
720 STBCX_OPCODE = (31u << OPCODE_SHIFT | 694u << 1),
721 STHCX_OPCODE = (31u << OPCODE_SHIFT | 726u << 1),
722 STWCX_OPCODE = (31u << OPCODE_SHIFT | 150u << 1),
723 STDCX_OPCODE = (31u << OPCODE_SHIFT | 214u << 1),
724 STQCX_OPCODE = (31u << OPCODE_SHIFT | 182u << 1)
725
726 };
727
728 // Trap instructions TO bits
729 enum trap_to_bits {
730 // single bits
731 traptoLessThanSigned = 1 << 4, // 0, left end
732 traptoGreaterThanSigned = 1 << 3,
733 traptoEqual = 1 << 2,
734 traptoLessThanUnsigned = 1 << 1,
735 traptoGreaterThanUnsigned = 1 << 0, // 4, right end
736
737 // compound ones
738 traptoUnconditional = (traptoLessThanSigned |
739 traptoGreaterThanSigned |
740 traptoEqual |
741 traptoLessThanUnsigned |
742 traptoGreaterThanUnsigned)
743 };
744
745 // Branch hints BH field
746 enum branch_hint_bh {
747 // bclr cases:
748 bhintbhBCLRisReturn = 0,
749 bhintbhBCLRisNotReturnButSame = 1,
750 bhintbhBCLRisNotPredictable = 3,
751
752 // bcctr cases:
753 bhintbhBCCTRisNotReturnButSame = 0,
754 bhintbhBCCTRisNotPredictable = 3
755 };
756
757 // Branch prediction hints AT field
758 enum branch_hint_at {
759 bhintatNoHint = 0, // at=00
760 bhintatIsNotTaken = 2, // at=10
761 bhintatIsTaken = 3 // at=11
762 };
763
764 // Branch prediction hints
765 enum branch_hint_concept {
766 // Use the same encoding as branch_hint_at to simply code.
767 bhintNoHint = bhintatNoHint,
768 bhintIsNotTaken = bhintatIsNotTaken,
769 bhintIsTaken = bhintatIsTaken
770 };
771
772 // Used in BO field of branch instruction.
773 enum branch_condition {
774 bcondCRbiIs0 = 4, // bo=001at
775 bcondCRbiIs1 = 12, // bo=011at
776 bcondAlways = 20 // bo=10100
777 };
778
779 // Branch condition with combined prediction hints.
780 enum branch_condition_with_hint {
781 bcondCRbiIs0_bhintNoHint = bcondCRbiIs0 | bhintatNoHint,
782 bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
783 bcondCRbiIs0_bhintIsTaken = bcondCRbiIs0 | bhintatIsTaken,
784 bcondCRbiIs1_bhintNoHint = bcondCRbiIs1 | bhintatNoHint,
785 bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
786 bcondCRbiIs1_bhintIsTaken = bcondCRbiIs1 | bhintatIsTaken,
787 };
788
789 // Elemental Memory Barriers (>=Power 8)
790 enum Elemental_Membar_mask_bits {
791 StoreStore = 1 << 0,
792 StoreLoad = 1 << 1,
793 LoadStore = 1 << 2,
794 LoadLoad = 1 << 3
795 };
796
797 // Branch prediction hints.
798 inline static int add_bhint_to_boint(const int bhint, const int boint) {
799 switch (boint) {
800 case bcondCRbiIs0:
801 case bcondCRbiIs1:
802 // branch_hint and branch_hint_at have same encodings
803 assert( (int)bhintNoHint == (int)bhintatNoHint
804 && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
805 && (int)bhintIsTaken == (int)bhintatIsTaken,
806 "wrong encodings");
807 assert((bhint & 0x03) == bhint, "wrong encodings");
808 return (boint & ~0x03) | bhint;
809 case bcondAlways:
810 // no branch_hint
811 return boint;
812 default:
813 ShouldNotReachHere();
814 return 0;
815 }
816 }
817
818 // Extract bcond from boint.
819 inline static int inv_boint_bcond(const int boint) {
820 int r_bcond = boint & ~0x03;
821 assert(r_bcond == bcondCRbiIs0 ||
822 r_bcond == bcondCRbiIs1 ||
823 r_bcond == bcondAlways,
824 "bad branch condition");
825 return r_bcond;
826 }
827
828 // Extract bhint from boint.
829 inline static int inv_boint_bhint(const int boint) {
830 int r_bhint = boint & 0x03;
831 assert(r_bhint == bhintatNoHint ||
832 r_bhint == bhintatIsNotTaken ||
833 r_bhint == bhintatIsTaken,
834 "bad branch hint");
835 return r_bhint;
836 }
837
838 // Calculate opposite of given bcond.
839 inline static int opposite_bcond(const int bcond) {
840 switch (bcond) {
841 case bcondCRbiIs0:
842 return bcondCRbiIs1;
843 case bcondCRbiIs1:
844 return bcondCRbiIs0;
845 default:
846 ShouldNotReachHere();
847 return 0;
848 }
849 }
850
851 // Calculate opposite of given bhint.
852 inline static int opposite_bhint(const int bhint) {
853 switch (bhint) {
854 case bhintatNoHint:
855 return bhintatNoHint;
856 case bhintatIsNotTaken:
857 return bhintatIsTaken;
858 case bhintatIsTaken:
859 return bhintatIsNotTaken;
860 default:
861 ShouldNotReachHere();
862 return 0;
863 }
864 }
865
866 // PPC branch instructions
867 enum ppcops {
868 b_op = 18,
869 bc_op = 16,
870 bcr_op = 19
871 };
872
873 enum Condition {
874 negative = 0,
875 less = 0,
876 positive = 1,
877 greater = 1,
878 zero = 2,
879 equal = 2,
880 summary_overflow = 3,
881 };
882
883 public:
884 // Helper functions for groups of instructions
885
886 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
887
888 // Instruction must start at passed address.
889 static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
890
891 // longest instructions
892 static int instr_maxlen() { return BytesPerInstWord; }
893
894 // Test if x is within signed immediate range for nbits.
895 static bool is_simm(int x, unsigned int nbits) {
896 assert(0 < nbits && nbits < 32, "out of bounds");
897 const int min = -(((int)1) << nbits-1);
898 const int maxplus1 = (((int)1) << nbits-1);
899 return min <= x && x < maxplus1;
900 }
901
902 static bool is_simm(jlong x, unsigned int nbits) {
903 assert(0 < nbits && nbits < 64, "out of bounds");
904 const jlong min = -(((jlong)1) << nbits-1);
905 const jlong maxplus1 = (((jlong)1) << nbits-1);
906 return min <= x && x < maxplus1;
907 }
908
909 // Test if x is within unsigned immediate range for nbits.
910 static bool is_uimm(int x, unsigned int nbits) {
911 assert(0 < nbits && nbits < 32, "out of bounds");
912 const unsigned int maxplus1 = (((unsigned int)1) << nbits);
913 return (unsigned int)x < maxplus1;
914 }
915
916 static bool is_uimm(jlong x, unsigned int nbits) {
917 assert(0 < nbits && nbits < 64, "out of bounds");
918 const julong maxplus1 = (((julong)1) << nbits);
919 return (julong)x < maxplus1;
920 }
921
922 protected:
923 // helpers
924
925 // X is supposed to fit in a field "nbits" wide
926 // and be sign-extended. Check the range.
927 static void assert_signed_range(intptr_t x, int nbits) {
928 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
929 "value out of range");
930 }
931
932 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
933 assert((x & 3) == 0, "not word aligned");
934 assert_signed_range(x, nbits + 2);
935 }
936
937 static void assert_unsigned_const(int x, int nbits) {
938 assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
939 }
940
941 static int fmask(juint hi_bit, juint lo_bit) {
942 assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
943 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
944 }
945
946 // inverse of u_field
947 static int inv_u_field(int x, int hi_bit, int lo_bit) {
948 juint r = juint(x) >> lo_bit;
949 r &= fmask(hi_bit, lo_bit);
950 return int(r);
951 }
952
953 // signed version: extract from field and sign-extend
954 static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
955 x = x << (31-hi_bit);
956 x = x >> (31-hi_bit+lo_bit);
957 return x;
958 }
959
960 static int u_field(int x, int hi_bit, int lo_bit) {
961 assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
962 int r = x << lo_bit;
963 assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
964 return r;
965 }
966
967 // Same as u_field for signed values
968 static int s_field(int x, int hi_bit, int lo_bit) {
969 int nbits = hi_bit - lo_bit + 1;
970 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
971 "value out of range");
972 x &= fmask(hi_bit, lo_bit);
973 int r = x << lo_bit;
974 return r;
975 }
976
977 // inv_op for ppc instructions
978 static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
979
980 // Determine target address from li, bd field of branch instruction.
981 static intptr_t inv_li_field(int x) {
982 intptr_t r = inv_s_field_ppc(x, 25, 2);
983 r = (r << 2);
984 return r;
985 }
986 static intptr_t inv_bd_field(int x, intptr_t pos) {
987 intptr_t r = inv_s_field_ppc(x, 15, 2);
988 r = (r << 2) + pos;
989 return r;
990 }
991
992 #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
993 #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
994 // Extract instruction fields from instruction words.
995 public:
996 static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); }
997 static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); }
998 static int inv_rt_field(int x) { return inv_opp_u_field(x, 10, 6); }
999 static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
1000 static int inv_rs_field(int x) { return inv_opp_u_field(x, 10, 6); }
1001 // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
1002 // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
1003 static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; }
1004 static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); }
1005 static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); }
1006 static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6); }
1007 static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); }
1008 static int inv_bo_field(int x) { return inv_opp_u_field(x, 10, 6); }
1009 static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); }
1010
1011 #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
1012 #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
1013
1014 // instruction fields
1015 static int aa( int x) { return opp_u_field(x, 30, 30); }
1016 static int ba( int x) { return opp_u_field(x, 15, 11); }
1017 static int bb( int x) { return opp_u_field(x, 20, 16); }
1018 static int bc( int x) { return opp_u_field(x, 25, 21); }
1019 static int bd( int x) { return opp_s_field(x, 29, 16); }
1020 static int bf( ConditionRegister cr) { return bf(cr->encoding()); }
1021 static int bf( int x) { return opp_u_field(x, 8, 6); }
1022 static int bfa(ConditionRegister cr) { return bfa(cr->encoding()); }
1023 static int bfa( int x) { return opp_u_field(x, 13, 11); }
1024 static int bh( int x) { return opp_u_field(x, 20, 19); }
1025 static int bi( int x) { return opp_u_field(x, 15, 11); }
1026 static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
1027 static int bo( int x) { return opp_u_field(x, 10, 6); }
1028 static int bt( int x) { return opp_u_field(x, 10, 6); }
1029 static int d1( int x) { return opp_s_field(x, 31, 16); }
1030 static int ds( int x) { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
1031 static int eh( int x) { return opp_u_field(x, 31, 31); }
1032 static int flm( int x) { return opp_u_field(x, 14, 7); }
1033 static int fra( FloatRegister r) { return fra(r->encoding());}
1034 static int frb( FloatRegister r) { return frb(r->encoding());}
1035 static int frc( FloatRegister r) { return frc(r->encoding());}
1036 static int frs( FloatRegister r) { return frs(r->encoding());}
1037 static int frt( FloatRegister r) { return frt(r->encoding());}
1038 static int fra( int x) { return opp_u_field(x, 15, 11); }
1039 static int frb( int x) { return opp_u_field(x, 20, 16); }
1040 static int frc( int x) { return opp_u_field(x, 25, 21); }
1041 static int frs( int x) { return opp_u_field(x, 10, 6); }
1042 static int frt( int x) { return opp_u_field(x, 10, 6); }
1043 static int fxm( int x) { return opp_u_field(x, 19, 12); }
1044 static int l10( int x) { return opp_u_field(x, 10, 10); }
1045 static int l15( int x) { return opp_u_field(x, 15, 15); }
1046 static int l910( int x) { return opp_u_field(x, 10, 9); }
1047 static int e1215( int x) { return opp_u_field(x, 15, 12); }
1048 static int lev( int x) { return opp_u_field(x, 26, 20); }
1049 static int li( int x) { return opp_s_field(x, 29, 6); }
1050 static int lk( int x) { return opp_u_field(x, 31, 31); }
1051 static int mb2125( int x) { return opp_u_field(x, 25, 21); }
1052 static int me2630( int x) { return opp_u_field(x, 30, 26); }
1053 static int mb2126( int x) { return opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
1054 static int me2126( int x) { return mb2126(x); }
1055 static int nb( int x) { return opp_u_field(x, 20, 16); }
1056 //static int opcd( int x) { return opp_u_field(x, 5, 0); } // is contained in our opcodes
1057 static int oe( int x) { return opp_u_field(x, 21, 21); }
1058 static int ra( Register r) { return ra(r->encoding()); }
1059 static int ra( int x) { return opp_u_field(x, 15, 11); }
1060 static int rb( Register r) { return rb(r->encoding()); }
1061 static int rb( int x) { return opp_u_field(x, 20, 16); }
1062 static int rc( int x) { return opp_u_field(x, 31, 31); }
1063 static int rs( Register r) { return rs(r->encoding()); }
1064 static int rs( int x) { return opp_u_field(x, 10, 6); }
1065 // we don't want to use R0 in memory accesses, because it has value `0' then
1066 static int ra0mem( Register r) { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
1067 static int ra0mem( int x) { assert(x != 0, "cannot use register 0 in memory access"); return ra(x); }
1068
1069 // register r is target
1070 static int rt( Register r) { return rs(r); }
1071 static int rt( int x) { return rs(x); }
1072 static int rta( Register r) { return ra(r); }
1073 static int rta0mem( Register r) { rta(r); return ra0mem(r); }
1074
1075 static int sh1620( int x) { return opp_u_field(x, 20, 16); }
1076 static int sh30( int x) { return opp_u_field(x, 30, 30); }
1077 static int sh162030( int x) { return sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
1078 static int si( int x) { return opp_s_field(x, 31, 16); }
1079 static int spr( int x) { return opp_u_field(x, 20, 11); }
1080 static int sr( int x) { return opp_u_field(x, 15, 12); }
1081 static int tbr( int x) { return opp_u_field(x, 20, 11); }
1082 static int th( int x) { return opp_u_field(x, 10, 7); }
1083 static int thct( int x) { assert((x&8) == 0, "must be valid cache specification"); return th(x); }
1084 static int thds( int x) { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
1085 static int to( int x) { return opp_u_field(x, 10, 6); }
1086 static int u( int x) { return opp_u_field(x, 19, 16); }
1087 static int ui( int x) { return opp_u_field(x, 31, 16); }
1088
1089 // Support vector instructions for >= Power6.
1090 static int vra( int x) { return opp_u_field(x, 15, 11); }
1091 static int vrb( int x) { return opp_u_field(x, 20, 16); }
1092 static int vrc( int x) { return opp_u_field(x, 25, 21); }
1093 static int vrs( int x) { return opp_u_field(x, 10, 6); }
1094 static int vrt( int x) { return opp_u_field(x, 10, 6); }
1095
1096 static int vra( VectorRegister r) { return vra(r->encoding());}
1097 static int vrb( VectorRegister r) { return vrb(r->encoding());}
1098 static int vrc( VectorRegister r) { return vrc(r->encoding());}
1099 static int vrs( VectorRegister r) { return vrs(r->encoding());}
1100 static int vrt( VectorRegister r) { return vrt(r->encoding());}
1101
1102 // Support Vector-Scalar (VSX) instructions.
1103 static int vsra( int x) { return opp_u_field(x, 15, 11); }
1104 static int vsrb( int x) { return opp_u_field(x, 20, 16); }
1105 static int vsrc( int x) { return opp_u_field(x, 25, 21); }
1106 static int vsrs( int x) { return opp_u_field(x, 10, 6); }
1107 static int vsrt( int x) { return opp_u_field(x, 10, 6); }
1108
1109 static int vsra( VectorSRegister r) { return vsra(r->encoding());}
1110 static int vsrb( VectorSRegister r) { return vsrb(r->encoding());}
1111 static int vsrc( VectorSRegister r) { return vsrc(r->encoding());}
1112 static int vsrs( VectorSRegister r) { return vsrs(r->encoding());}
1113 static int vsrt( VectorSRegister r) { return vsrt(r->encoding());}
1114
1115 static int vsplt_uim( int x) { return opp_u_field(x, 15, 12); } // for vsplt* instructions
1116 static int vsplti_sim(int x) { return opp_u_field(x, 15, 11); } // for vsplti* instructions
1117 static int vsldoi_shb(int x) { return opp_u_field(x, 25, 22); } // for vsldoi instruction
1118 static int vcmp_rc( int x) { return opp_u_field(x, 21, 21); } // for vcmp* instructions
1119
1120 //static int xo1( int x) { return opp_u_field(x, 29, 21); }// is contained in our opcodes
1121 //static int xo2( int x) { return opp_u_field(x, 30, 21); }// is contained in our opcodes
1122 //static int xo3( int x) { return opp_u_field(x, 30, 22); }// is contained in our opcodes
1123 //static int xo4( int x) { return opp_u_field(x, 30, 26); }// is contained in our opcodes
1124 //static int xo5( int x) { return opp_u_field(x, 29, 27); }// is contained in our opcodes
1125 //static int xo6( int x) { return opp_u_field(x, 30, 27); }// is contained in our opcodes
1126 //static int xo7( int x) { return opp_u_field(x, 31, 30); }// is contained in our opcodes
1127
1128 protected:
1129 // Compute relative address for branch.
1130 static intptr_t disp(intptr_t x, intptr_t off) {
1131 int xx = x - off;
1132 xx = xx >> 2;
1133 return xx;
1134 }
1135
1136 public:
1137 // signed immediate, in low bits, nbits long
1138 static int simm(int x, int nbits) {
1139 assert_signed_range(x, nbits);
1140 return x & ((1 << nbits) - 1);
1141 }
1142
1143 // unsigned immediate, in low bits, nbits long
1144 static int uimm(int x, int nbits) {
1145 assert_unsigned_const(x, nbits);
1146 return x & ((1 << nbits) - 1);
1147 }
1148
1149 static void set_imm(int* instr, short s) {
1150 // imm is always in the lower 16 bits of the instruction,
1151 // so this is endian-neutral. Same for the get_imm below.
1152 uint32_t w = *(uint32_t *)instr;
1153 *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
1154 }
1155
1156 static int get_imm(address a, int instruction_number) {
1157 return (short)((int *)a)[instruction_number];
1158 }
1159
1160 static inline int hi16_signed( int x) { return (int)(int16_t)(x >> 16); }
1161 static inline int lo16_unsigned(int x) { return x & 0xffff; }
1162
1163 protected:
1164
1165 // Extract the top 32 bits in a 64 bit word.
1166 static int32_t hi32(int64_t x) {
1167 int32_t r = int32_t((uint64_t)x >> 32);
1168 return r;
1169 }
1170
1171 public:
1172
1173 static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
1174 return ((addr + (a - 1)) & ~(a - 1));
1175 }
1176
1177 static inline bool is_aligned(unsigned int addr, unsigned int a) {
1178 return (0 == addr % a);
1179 }
1180
1181 void flush() {
1182 AbstractAssembler::flush();
1183 }
1184
1185 inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
1186 inline void emit_data(int);
1187 inline void emit_data(int, RelocationHolder const&);
1188 inline void emit_data(int, relocInfo::relocType rtype);
1189
1190 // Emit an address.
1191 inline address emit_addr(const address addr = NULL);
1192
1193 #if !defined(ABI_ELFv2)
1194 // Emit a function descriptor with the specified entry point, TOC,
1195 // and ENV. If the entry point is NULL, the descriptor will point
1196 // just past the descriptor.
1197 // Use values from friend functions as defaults.
1198 inline address emit_fd(address entry = NULL,
1199 address toc = (address) FunctionDescriptor::friend_toc,
1200 address env = (address) FunctionDescriptor::friend_env);
1201 #endif
1202
1203 /////////////////////////////////////////////////////////////////////////////////////
1204 // PPC instructions
1205 /////////////////////////////////////////////////////////////////////////////////////
1206
1207 // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
1208 // immediates. The normal instruction encoders enforce that r0 is not
1209 // passed to them. Use either extended mnemonics encoders or the special ra0
1210 // versions.
1211
1212 // Issue an illegal instruction.
1213 inline void illtrap();
1214 static inline bool is_illtrap(int x);
1215
1216 // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
1217 inline void addi( Register d, Register a, int si16);
1218 inline void addis(Register d, Register a, int si16);
1219 private:
1220 inline void addi_r0ok( Register d, Register a, int si16);
1221 inline void addis_r0ok(Register d, Register a, int si16);
1222 public:
1223 inline void addic_( Register d, Register a, int si16);
1224 inline void subfic( Register d, Register a, int si16);
1225 inline void add( Register d, Register a, Register b);
1226 inline void add_( Register d, Register a, Register b);
1227 inline void subf( Register d, Register a, Register b); // d = b - a "Sub_from", as in ppc spec.
1228 inline void sub( Register d, Register a, Register b); // d = a - b Swap operands of subf for readability.
1229 inline void subf_( Register d, Register a, Register b);
1230 inline void addc( Register d, Register a, Register b);
1231 inline void addc_( Register d, Register a, Register b);
1232 inline void subfc( Register d, Register a, Register b);
1233 inline void subfc_( Register d, Register a, Register b);
1234 inline void adde( Register d, Register a, Register b);
1235 inline void adde_( Register d, Register a, Register b);
1236 inline void subfe( Register d, Register a, Register b);
1237 inline void subfe_( Register d, Register a, Register b);
1238 inline void addme( Register d, Register a);
1239 inline void addme_( Register d, Register a);
1240 inline void subfme( Register d, Register a);
1241 inline void subfme_(Register d, Register a);
1242 inline void addze( Register d, Register a);
1243 inline void addze_( Register d, Register a);
1244 inline void subfze( Register d, Register a);
1245 inline void subfze_(Register d, Register a);
1246 inline void neg( Register d, Register a);
1247 inline void neg_( Register d, Register a);
1248 inline void mulli( Register d, Register a, int si16);
1249 inline void mulld( Register d, Register a, Register b);
1250 inline void mulld_( Register d, Register a, Register b);
1251 inline void mullw( Register d, Register a, Register b);
1252 inline void mullw_( Register d, Register a, Register b);
1253 inline void mulhw( Register d, Register a, Register b);
1254 inline void mulhw_( Register d, Register a, Register b);
1255 inline void mulhwu( Register d, Register a, Register b);
1256 inline void mulhwu_(Register d, Register a, Register b);
1257 inline void mulhd( Register d, Register a, Register b);
1258 inline void mulhd_( Register d, Register a, Register b);
1259 inline void mulhdu( Register d, Register a, Register b);
1260 inline void mulhdu_(Register d, Register a, Register b);
1261 inline void divd( Register d, Register a, Register b);
1262 inline void divd_( Register d, Register a, Register b);
1263 inline void divw( Register d, Register a, Register b);
1264 inline void divw_( Register d, Register a, Register b);
1265
1266 // Fixed-Point Arithmetic Instructions with Overflow detection
1267 inline void addo( Register d, Register a, Register b);
1268 inline void addo_( Register d, Register a, Register b);
1269 inline void subfo( Register d, Register a, Register b);
1270 inline void subfo_( Register d, Register a, Register b);
1271 inline void addco( Register d, Register a, Register b);
1272 inline void addco_( Register d, Register a, Register b);
1273 inline void subfco( Register d, Register a, Register b);
1274 inline void subfco_( Register d, Register a, Register b);
1275 inline void addeo( Register d, Register a, Register b);
1276 inline void addeo_( Register d, Register a, Register b);
1277 inline void subfeo( Register d, Register a, Register b);
1278 inline void subfeo_( Register d, Register a, Register b);
1279 inline void addmeo( Register d, Register a);
1280 inline void addmeo_( Register d, Register a);
1281 inline void subfmeo( Register d, Register a);
1282 inline void subfmeo_(Register d, Register a);
1283 inline void addzeo( Register d, Register a);
1284 inline void addzeo_( Register d, Register a);
1285 inline void subfzeo( Register d, Register a);
1286 inline void subfzeo_(Register d, Register a);
1287 inline void nego( Register d, Register a);
1288 inline void nego_( Register d, Register a);
1289 inline void mulldo( Register d, Register a, Register b);
1290 inline void mulldo_( Register d, Register a, Register b);
1291 inline void mullwo( Register d, Register a, Register b);
1292 inline void mullwo_( Register d, Register a, Register b);
1293 inline void divdo( Register d, Register a, Register b);
1294 inline void divdo_( Register d, Register a, Register b);
1295 inline void divwo( Register d, Register a, Register b);
1296 inline void divwo_( Register d, Register a, Register b);
1297
1298 // extended mnemonics
1299 inline void li( Register d, int si16);
1300 inline void lis( Register d, int si16);
1301 inline void addir(Register d, int si16, Register a);
1302
1303 static bool is_addi(int x) {
1304 return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
1305 }
1306 static bool is_addis(int x) {
1307 return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
1308 }
1309 static bool is_bxx(int x) {
1310 return BXX_OPCODE == (x & BXX_OPCODE_MASK);
1311 }
1312 static bool is_b(int x) {
1313 return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
1314 }
1315 static bool is_bl(int x) {
1316 return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
1317 }
1318 static bool is_bcxx(int x) {
1319 return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
1320 }
1321 static bool is_bxx_or_bcxx(int x) {
1322 return is_bxx(x) || is_bcxx(x);
1323 }
1324 static bool is_bctrl(int x) {
1325 return x == 0x4e800421;
1326 }
1327 static bool is_bctr(int x) {
1328 return x == 0x4e800420;
1329 }
1330 static bool is_bclr(int x) {
1331 return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
1332 }
1333 static bool is_li(int x) {
1334 return is_addi(x) && inv_ra_field(x)==0;
1335 }
1336 static bool is_lis(int x) {
1337 return is_addis(x) && inv_ra_field(x)==0;
1338 }
1339 static bool is_mtctr(int x) {
1340 return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
1341 }
1342 static bool is_ld(int x) {
1343 return LD_OPCODE == (x & LD_OPCODE_MASK);
1344 }
1345 static bool is_std(int x) {
1346 return STD_OPCODE == (x & STD_OPCODE_MASK);
1347 }
1348 static bool is_stdu(int x) {
1349 return STDU_OPCODE == (x & STDU_OPCODE_MASK);
1350 }
1351 static bool is_stdx(int x) {
1352 return STDX_OPCODE == (x & STDX_OPCODE_MASK);
1353 }
1354 static bool is_stdux(int x) {
1355 return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
1356 }
1357 static bool is_stwx(int x) {
1358 return STWX_OPCODE == (x & STWX_OPCODE_MASK);
1359 }
1360 static bool is_stwux(int x) {
1361 return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
1362 }
1363 static bool is_stw(int x) {
1364 return STW_OPCODE == (x & STW_OPCODE_MASK);
1365 }
1366 static bool is_stwu(int x) {
1367 return STWU_OPCODE == (x & STWU_OPCODE_MASK);
1368 }
1369 static bool is_ori(int x) {
1370 return ORI_OPCODE == (x & ORI_OPCODE_MASK);
1371 };
1372 static bool is_oris(int x) {
1373 return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
1374 };
1375 static bool is_rldicr(int x) {
1376 return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
1377 };
1378 static bool is_nop(int x) {
1379 return x == 0x60000000;
1380 }
1381 // endgroup opcode for Power6
1382 static bool is_endgroup(int x) {
1383 return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
1384 }
1385
1386
1387 private:
1388 // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
1389 inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
1390 inline void cmp( ConditionRegister bf, int l, Register a, Register b);
1391 inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
1392 inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
1393
1394 public:
1395 // extended mnemonics of Compare Instructions
1396 inline void cmpwi( ConditionRegister crx, Register a, int si16);
1397 inline void cmpdi( ConditionRegister crx, Register a, int si16);
1398 inline void cmpw( ConditionRegister crx, Register a, Register b);
1399 inline void cmpd( ConditionRegister crx, Register a, Register b);
1400 inline void cmplwi(ConditionRegister crx, Register a, int ui16);
1401 inline void cmpldi(ConditionRegister crx, Register a, int ui16);
1402 inline void cmplw( ConditionRegister crx, Register a, Register b);
1403 inline void cmpld( ConditionRegister crx, Register a, Register b);
1404
1405 inline void isel( Register d, Register a, Register b, int bc);
1406 // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
1407 inline void isel( Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
1408 // Set d = 0 if (cr.cc) equals 1, otherwise b.
1409 inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
1410
1411 // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1412 void andi( Register a, Register s, long ui16); // optimized version
1413 inline void andi_( Register a, Register s, int ui16);
1414 inline void andis_( Register a, Register s, int ui16);
1415 inline void ori( Register a, Register s, int ui16);
1416 inline void oris( Register a, Register s, int ui16);
1417 inline void xori( Register a, Register s, int ui16);
1418 inline void xoris( Register a, Register s, int ui16);
1419 inline void andr( Register a, Register s, Register b); // suffixed by 'r' as 'and' is C++ keyword
1420 inline void and_( Register a, Register s, Register b);
1421 // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
1422 // SMT-priority change instruction (see SMT instructions below).
1423 inline void or_unchecked(Register a, Register s, Register b);
1424 inline void orr( Register a, Register s, Register b); // suffixed by 'r' as 'or' is C++ keyword
1425 inline void or_( Register a, Register s, Register b);
1426 inline void xorr( Register a, Register s, Register b); // suffixed by 'r' as 'xor' is C++ keyword
1427 inline void xor_( Register a, Register s, Register b);
1428 inline void nand( Register a, Register s, Register b);
1429 inline void nand_( Register a, Register s, Register b);
1430 inline void nor( Register a, Register s, Register b);
1431 inline void nor_( Register a, Register s, Register b);
1432 inline void andc( Register a, Register s, Register b);
1433 inline void andc_( Register a, Register s, Register b);
1434 inline void orc( Register a, Register s, Register b);
1435 inline void orc_( Register a, Register s, Register b);
1436 inline void extsb( Register a, Register s);
1437 inline void extsb_( Register a, Register s);
1438 inline void extsh( Register a, Register s);
1439 inline void extsh_( Register a, Register s);
1440 inline void extsw( Register a, Register s);
1441 inline void extsw_( Register a, Register s);
1442
1443 // extended mnemonics
1444 inline void nop();
1445 // NOP for FP and BR units (different versions to allow them to be in one group)
1446 inline void fpnop0();
1447 inline void fpnop1();
1448 inline void brnop0();
1449 inline void brnop1();
1450 inline void brnop2();
1451
1452 inline void mr( Register d, Register s);
1453 inline void ori_opt( Register d, int ui16);
1454 inline void oris_opt(Register d, int ui16);
1455
1456 // endgroup opcode for Power6
1457 inline void endgroup();
1458
1459 // count instructions
1460 inline void cntlzw( Register a, Register s);
1461 inline void cntlzw_( Register a, Register s);
1462 inline void cntlzd( Register a, Register s);
1463 inline void cntlzd_( Register a, Register s);
1464
1465 // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
1466 inline void sld( Register a, Register s, Register b);
1467 inline void sld_( Register a, Register s, Register b);
1468 inline void slw( Register a, Register s, Register b);
1469 inline void slw_( Register a, Register s, Register b);
1470 inline void srd( Register a, Register s, Register b);
1471 inline void srd_( Register a, Register s, Register b);
1472 inline void srw( Register a, Register s, Register b);
1473 inline void srw_( Register a, Register s, Register b);
1474 inline void srad( Register a, Register s, Register b);
1475 inline void srad_( Register a, Register s, Register b);
1476 inline void sraw( Register a, Register s, Register b);
1477 inline void sraw_( Register a, Register s, Register b);
1478 inline void sradi( Register a, Register s, int sh6);
1479 inline void sradi_( Register a, Register s, int sh6);
1480 inline void srawi( Register a, Register s, int sh5);
1481 inline void srawi_( Register a, Register s, int sh5);
1482
1483 // extended mnemonics for Shift Instructions
1484 inline void sldi( Register a, Register s, int sh6);
1485 inline void sldi_( Register a, Register s, int sh6);
1486 inline void slwi( Register a, Register s, int sh5);
1487 inline void slwi_( Register a, Register s, int sh5);
1488 inline void srdi( Register a, Register s, int sh6);
1489 inline void srdi_( Register a, Register s, int sh6);
1490 inline void srwi( Register a, Register s, int sh5);
1491 inline void srwi_( Register a, Register s, int sh5);
1492
1493 inline void clrrdi( Register a, Register s, int ui6);
1494 inline void clrrdi_( Register a, Register s, int ui6);
1495 inline void clrldi( Register a, Register s, int ui6);
1496 inline void clrldi_( Register a, Register s, int ui6);
1497 inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
1498 inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
1499 inline void extrdi( Register a, Register s, int n, int b);
1500 // testbit with condition register
1501 inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
1502
1503 // rotate instructions
1504 inline void rotldi( Register a, Register s, int n);
1505 inline void rotrdi( Register a, Register s, int n);
1506 inline void rotlwi( Register a, Register s, int n);
1507 inline void rotrwi( Register a, Register s, int n);
1508
1509 // Rotate Instructions
1510 inline void rldic( Register a, Register s, int sh6, int mb6);
1511 inline void rldic_( Register a, Register s, int sh6, int mb6);
1512 inline void rldicr( Register a, Register s, int sh6, int mb6);
1513 inline void rldicr_( Register a, Register s, int sh6, int mb6);
1514 inline void rldicl( Register a, Register s, int sh6, int mb6);
1515 inline void rldicl_( Register a, Register s, int sh6, int mb6);
1516 inline void rlwinm( Register a, Register s, int sh5, int mb5, int me5);
1517 inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
1518 inline void rldimi( Register a, Register s, int sh6, int mb6);
1519 inline void rldimi_( Register a, Register s, int sh6, int mb6);
1520 inline void rlwimi( Register a, Register s, int sh5, int mb5, int me5);
1521 inline void insrdi( Register a, Register s, int n, int b);
1522 inline void insrwi( Register a, Register s, int n, int b);
1523
1524 // PPC 1, section 3.3.2 Fixed-Point Load Instructions
1525 // 4 bytes
1526 inline void lwzx( Register d, Register s1, Register s2);
1527 inline void lwz( Register d, int si16, Register s1);
1528 inline void lwzu( Register d, int si16, Register s1);
1529
1530 // 4 bytes
1531 inline void lwax( Register d, Register s1, Register s2);
1532 inline void lwa( Register d, int si16, Register s1);
1533
1534 // 4 bytes reversed
1535 inline void lwbrx( Register d, Register s1, Register s2);
1536
1537 // 2 bytes
1538 inline void lhzx( Register d, Register s1, Register s2);
1539 inline void lhz( Register d, int si16, Register s1);
1540 inline void lhzu( Register d, int si16, Register s1);
1541
1542 // 2 bytes reversed
1543 inline void lhbrx( Register d, Register s1, Register s2);
1544
1545 // 2 bytes
1546 inline void lhax( Register d, Register s1, Register s2);
1547 inline void lha( Register d, int si16, Register s1);
1548 inline void lhau( Register d, int si16, Register s1);
1549
1550 // 1 byte
1551 inline void lbzx( Register d, Register s1, Register s2);
1552 inline void lbz( Register d, int si16, Register s1);
1553 inline void lbzu( Register d, int si16, Register s1);
1554
1555 // 8 bytes
1556 inline void ldx( Register d, Register s1, Register s2);
1557 inline void ld( Register d, int si16, Register s1);
1558 inline void ldu( Register d, int si16, Register s1);
1559
1560 // 8 bytes reversed
1561 inline void ldbrx( Register d, Register s1, Register s2);
1562
1563 // For convenience. Load pointer into d from b+s1.
1564 inline void ld_ptr(Register d, int b, Register s1);
1565 DEBUG_ONLY(inline void ld_ptr(Register d, ByteSize b, Register s1);)
1566
1567 // PPC 1, section 3.3.3 Fixed-Point Store Instructions
1568 inline void stwx( Register d, Register s1, Register s2);
1569 inline void stw( Register d, int si16, Register s1);
1570 inline void stwu( Register d, int si16, Register s1);
1571 inline void stwbrx( Register d, Register s1, Register s2);
1572
1573 inline void sthx( Register d, Register s1, Register s2);
1574 inline void sth( Register d, int si16, Register s1);
1575 inline void sthu( Register d, int si16, Register s1);
1576 inline void sthbrx( Register d, Register s1, Register s2);
1577
1578 inline void stbx( Register d, Register s1, Register s2);
1579 inline void stb( Register d, int si16, Register s1);
1580 inline void stbu( Register d, int si16, Register s1);
1581
1582 inline void stdx( Register d, Register s1, Register s2);
1583 inline void std( Register d, int si16, Register s1);
1584 inline void stdu( Register d, int si16, Register s1);
1585 inline void stdux(Register s, Register a, Register b);
1586 inline void stdbrx( Register d, Register s1, Register s2);
1587
1588 inline void st_ptr(Register d, int si16, Register s1);
1589 DEBUG_ONLY(inline void st_ptr(Register d, ByteSize b, Register s1);)
1590
1591 // PPC 1, section 3.3.13 Move To/From System Register Instructions
1592 inline void mtlr( Register s1);
1593 inline void mflr( Register d);
1594 inline void mtctr(Register s1);
1595 inline void mfctr(Register d);
1596 inline void mtcrf(int fxm, Register s);
1597 inline void mfcr( Register d);
1598 inline void mcrf( ConditionRegister crd, ConditionRegister cra);
1599 inline void mtcr( Register s);
1600
1601 // Special purpose registers
1602 // Exception Register
1603 inline void mtxer(Register s1);
1604 inline void mfxer(Register d);
1605 // Vector Register Save Register
1606 inline void mtvrsave(Register s1);
1607 inline void mfvrsave(Register d);
1608 // Timebase
1609 inline void mftb(Register d);
1610 // Introduced with Power 8:
1611 // Data Stream Control Register
1612 inline void mtdscr(Register s1);
1613 inline void mfdscr(Register d );
1614 // Transactional Memory Registers
1615 inline void mftfhar(Register d);
1616 inline void mftfiar(Register d);
1617 inline void mftexasr(Register d);
1618 inline void mftexasru(Register d);
1619
1620 // TEXASR bit description
1621 enum transaction_failure_reason {
1622 // Upper half (TEXASRU):
1623 tm_failure_persistent = 7, // The failure is likely to recur on each execution.
1624 tm_disallowed = 8, // The instruction is not permitted.
1625 tm_nesting_of = 9, // The maximum transaction level was exceeded.
1626 tm_footprint_of = 10, // The tracking limit for transactional storage accesses was exceeded.
1627 tm_self_induced_cf = 11, // A self-induced conflict occurred in Suspended state.
1628 tm_non_trans_cf = 12, // A conflict occurred with a non-transactional access by another processor.
1629 tm_trans_cf = 13, // A conflict occurred with another transaction.
1630 tm_translation_cf = 14, // A conflict occurred with a TLB invalidation.
1631 tm_inst_fetch_cf = 16, // An instruction fetch was performed from a block that was previously written transactionally.
1632 tm_tabort = 31, // Termination was caused by the execution of an abort instruction.
1633 // Lower half:
1634 tm_suspended = 32, // Failure was recorded in Suspended state.
1635 tm_failure_summary = 36, // Failure has been detected and recorded.
1636 tm_tfiar_exact = 37, // Value in the TFIAR is exact.
1637 tm_rot = 38, // Rollback-only transaction.
1638 };
1639
1640 // PPC 1, section 2.4.1 Branch Instructions
1641 inline void b( address a, relocInfo::relocType rt = relocInfo::none);
1642 inline void b( Label& L);
1643 inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
1644 inline void bl( Label& L);
1645 inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1646 inline void bc( int boint, int biint, Label& L);
1647 inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1648 inline void bcl(int boint, int biint, Label& L);
1649
1650 inline void bclr( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1651 inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1652 inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
1653 relocInfo::relocType rt = relocInfo::none);
1654 inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
1655 relocInfo::relocType rt = relocInfo::none);
1656
1657 // helper function for b, bcxx
1658 inline bool is_within_range_of_b(address a, address pc);
1659 inline bool is_within_range_of_bcxx(address a, address pc);
1660
1661 // get the destination of a bxx branch (b, bl, ba, bla)
1662 static inline address bxx_destination(address baddr);
1663 static inline address bxx_destination(int instr, address pc);
1664 static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
1665
1666 // extended mnemonics for branch instructions
1667 inline void blt(ConditionRegister crx, Label& L);
1668 inline void bgt(ConditionRegister crx, Label& L);
1669 inline void beq(ConditionRegister crx, Label& L);
1670 inline void bso(ConditionRegister crx, Label& L);
1671 inline void bge(ConditionRegister crx, Label& L);
1672 inline void ble(ConditionRegister crx, Label& L);
1673 inline void bne(ConditionRegister crx, Label& L);
1674 inline void bns(ConditionRegister crx, Label& L);
1675
1676 // Branch instructions with static prediction hints.
1677 inline void blt_predict_taken( ConditionRegister crx, Label& L);
1678 inline void bgt_predict_taken( ConditionRegister crx, Label& L);
1679 inline void beq_predict_taken( ConditionRegister crx, Label& L);
1680 inline void bso_predict_taken( ConditionRegister crx, Label& L);
1681 inline void bge_predict_taken( ConditionRegister crx, Label& L);
1682 inline void ble_predict_taken( ConditionRegister crx, Label& L);
1683 inline void bne_predict_taken( ConditionRegister crx, Label& L);
1684 inline void bns_predict_taken( ConditionRegister crx, Label& L);
1685 inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
1686 inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
1687 inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
1688 inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
1689 inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
1690 inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
1691 inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
1692 inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
1693
1694 // for use in conjunction with testbitdi:
1695 inline void btrue( ConditionRegister crx, Label& L);
1696 inline void bfalse(ConditionRegister crx, Label& L);
1697
1698 inline void bltl(ConditionRegister crx, Label& L);
1699 inline void bgtl(ConditionRegister crx, Label& L);
1700 inline void beql(ConditionRegister crx, Label& L);
1701 inline void bsol(ConditionRegister crx, Label& L);
1702 inline void bgel(ConditionRegister crx, Label& L);
1703 inline void blel(ConditionRegister crx, Label& L);
1704 inline void bnel(ConditionRegister crx, Label& L);
1705 inline void bnsl(ConditionRegister crx, Label& L);
1706
1707 // extended mnemonics for Branch Instructions via LR
1708 // We use `blr' for returns.
1709 inline void blr(relocInfo::relocType rt = relocInfo::none);
1710
1711 // extended mnemonics for Branch Instructions with CTR
1712 // bdnz means `decrement CTR and jump to L if CTR is not zero'
1713 inline void bdnz(Label& L);
1714 // Decrement and branch if result is zero.
1715 inline void bdz(Label& L);
1716 // we use `bctr[l]' for jumps/calls in function descriptor glue
1717 // code, e.g. calls to runtime functions
1718 inline void bctr( relocInfo::relocType rt = relocInfo::none);
1719 inline void bctrl(relocInfo::relocType rt = relocInfo::none);
1720 // conditional jumps/branches via CTR
1721 inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1722 inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1723 inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1724 inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1725
1726 // condition register logic instructions
1727 // NOTE: There's a preferred form: d and s2 should point into the same condition register.
1728 inline void crand( int d, int s1, int s2);
1729 inline void crnand(int d, int s1, int s2);
1730 inline void cror( int d, int s1, int s2);
1731 inline void crxor( int d, int s1, int s2);
1732 inline void crnor( int d, int s1, int s2);
1733 inline void creqv( int d, int s1, int s2);
1734 inline void crandc(int d, int s1, int s2);
1735 inline void crorc( int d, int s1, int s2);
1736
1737 // More convenient version.
1738 int condition_register_bit(ConditionRegister cr, Condition c) {
1739 return 4 * (int)(intptr_t)cr + c;
1740 }
1741 void crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1742 void crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1743 void cror( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1744 void crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1745 void crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1746 void creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1747 void crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1748 void crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1749
1750 // icache and dcache related instructions
1751 inline void icbi( Register s1, Register s2);
1752 //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
1753 inline void dcbz( Register s1, Register s2);
1754 inline void dcbst( Register s1, Register s2);
1755 inline void dcbf( Register s1, Register s2);
1756
1757 enum ct_cache_specification {
1758 ct_primary_cache = 0,
1759 ct_secondary_cache = 2
1760 };
1761 // dcache read hint
1762 inline void dcbt( Register s1, Register s2);
1763 inline void dcbtct( Register s1, Register s2, int ct);
1764 inline void dcbtds( Register s1, Register s2, int ds);
1765 // dcache write hint
1766 inline void dcbtst( Register s1, Register s2);
1767 inline void dcbtstct(Register s1, Register s2, int ct);
1768
1769 // machine barrier instructions:
1770 //
1771 // - sync two-way memory barrier, aka fence
1772 // - lwsync orders Store|Store,
1773 // Load|Store,
1774 // Load|Load,
1775 // but not Store|Load
1776 // - eieio orders memory accesses for device memory (only)
1777 // - isync invalidates speculatively executed instructions
1778 // From the Power ISA 2.06 documentation:
1779 // "[...] an isync instruction prevents the execution of
1780 // instructions following the isync until instructions
1781 // preceding the isync have completed, [...]"
1782 // From IBM's AIX assembler reference:
1783 // "The isync [...] instructions causes the processor to
1784 // refetch any instructions that might have been fetched
1785 // prior to the isync instruction. The instruction isync
1786 // causes the processor to wait for all previous instructions
1787 // to complete. Then any instructions already fetched are
1788 // discarded and instruction processing continues in the
1789 // environment established by the previous instructions."
1790 //
1791 // semantic barrier instructions:
1792 // (as defined in orderAccess.hpp)
1793 //
1794 // - release orders Store|Store, (maps to lwsync)
1795 // Load|Store
1796 // - acquire orders Load|Store, (maps to lwsync)
1797 // Load|Load
1798 // - fence orders Store|Store, (maps to sync)
1799 // Load|Store,
1800 // Load|Load,
1801 // Store|Load
1802 //
1803 private:
1804 inline void sync(int l);
1805 public:
1806 inline void sync();
1807 inline void lwsync();
1808 inline void ptesync();
1809 inline void eieio();
1810 inline void isync();
1811 inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
1812
1813 // Wait instructions for polling. Attention: May result in SIGILL.
1814 inline void wait();
1815 inline void waitrsv(); // >=Power7
1816
1817 // atomics
1818 inline void lbarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
1819 inline void lharx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
1820 inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1821 inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1822 inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
1823 inline bool lxarx_hint_exclusive_access();
1824 inline void lbarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1825 inline void lharx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1826 inline void lwarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1827 inline void ldarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1828 inline void lqarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1829 inline void stbcx_( Register s, Register a, Register b);
1830 inline void sthcx_( Register s, Register a, Register b);
1831 inline void stwcx_( Register s, Register a, Register b);
1832 inline void stdcx_( Register s, Register a, Register b);
1833 inline void stqcx_( Register s, Register a, Register b);
1834
1835 // Instructions for adjusting thread priority for simultaneous
1836 // multithreading (SMT) on Power5.
1837 private:
1838 inline void smt_prio_very_low();
1839 inline void smt_prio_medium_high();
1840 inline void smt_prio_high();
1841
1842 public:
1843 inline void smt_prio_low();
1844 inline void smt_prio_medium_low();
1845 inline void smt_prio_medium();
1846 // >= Power7
1847 inline void smt_yield();
1848 inline void smt_mdoio();
1849 inline void smt_mdoom();
1850 // >= Power8
1851 inline void smt_miso();
1852
1853 // trap instructions
1854 inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
1855 // NOT FOR DIRECT USE!!
1856 protected:
1857 inline void tdi_unchecked(int tobits, Register a, int si16);
1858 inline void twi_unchecked(int tobits, Register a, int si16);
1859 inline void tdi( int tobits, Register a, int si16); // asserts UseSIGTRAP
1860 inline void twi( int tobits, Register a, int si16); // asserts UseSIGTRAP
1861 inline void td( int tobits, Register a, Register b); // asserts UseSIGTRAP
1862 inline void tw( int tobits, Register a, Register b); // asserts UseSIGTRAP
1863
1864 static bool is_tdi(int x, int tobits, int ra, int si16) {
1865 return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
1866 && (tobits == inv_to_field(x))
1867 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1868 && (si16 == inv_si_field(x));
1869 }
1870
1871 static bool is_twi(int x, int tobits, int ra, int si16) {
1872 return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1873 && (tobits == inv_to_field(x))
1874 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1875 && (si16 == inv_si_field(x));
1876 }
1877
1878 static bool is_twi(int x, int tobits, int ra) {
1879 return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1880 && (tobits == inv_to_field(x))
1881 && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
1882 }
1883
1884 static bool is_td(int x, int tobits, int ra, int rb) {
1885 return (TD_OPCODE == (x & TD_OPCODE_MASK))
1886 && (tobits == inv_to_field(x))
1887 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1888 && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1889 }
1890
1891 static bool is_tw(int x, int tobits, int ra, int rb) {
1892 return (TW_OPCODE == (x & TW_OPCODE_MASK))
1893 && (tobits == inv_to_field(x))
1894 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1895 && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1896 }
1897
1898 public:
1899 // PPC floating point instructions
1900 // PPC 1, section 4.6.2 Floating-Point Load Instructions
1901 inline void lfs( FloatRegister d, int si16, Register a);
1902 inline void lfsu( FloatRegister d, int si16, Register a);
1903 inline void lfsx( FloatRegister d, Register a, Register b);
1904 inline void lfd( FloatRegister d, int si16, Register a);
1905 inline void lfdu( FloatRegister d, int si16, Register a);
1906 inline void lfdx( FloatRegister d, Register a, Register b);
1907
1908 // PPC 1, section 4.6.3 Floating-Point Store Instructions
1909 inline void stfs( FloatRegister s, int si16, Register a);
1910 inline void stfsu( FloatRegister s, int si16, Register a);
1911 inline void stfsx( FloatRegister s, Register a, Register b);
1912 inline void stfd( FloatRegister s, int si16, Register a);
1913 inline void stfdu( FloatRegister s, int si16, Register a);
1914 inline void stfdx( FloatRegister s, Register a, Register b);
1915
1916 // PPC 1, section 4.6.4 Floating-Point Move Instructions
1917 inline void fmr( FloatRegister d, FloatRegister b);
1918 inline void fmr_( FloatRegister d, FloatRegister b);
1919
1920 // inline void mffgpr( FloatRegister d, Register b);
1921 // inline void mftgpr( Register d, FloatRegister b);
1922 inline void cmpb( Register a, Register s, Register b);
1923 inline void popcntb(Register a, Register s);
1924 inline void popcntw(Register a, Register s);
1925 inline void popcntd(Register a, Register s);
1926
1927 inline void fneg( FloatRegister d, FloatRegister b);
1928 inline void fneg_( FloatRegister d, FloatRegister b);
1929 inline void fabs( FloatRegister d, FloatRegister b);
1930 inline void fabs_( FloatRegister d, FloatRegister b);
1931 inline void fnabs( FloatRegister d, FloatRegister b);
1932 inline void fnabs_(FloatRegister d, FloatRegister b);
1933
1934 // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
1935 inline void fadd( FloatRegister d, FloatRegister a, FloatRegister b);
1936 inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
1937 inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
1938 inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
1939 inline void fsub( FloatRegister d, FloatRegister a, FloatRegister b);
1940 inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
1941 inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
1942 inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
1943 inline void fmul( FloatRegister d, FloatRegister a, FloatRegister c);
1944 inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
1945 inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
1946 inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
1947 inline void fdiv( FloatRegister d, FloatRegister a, FloatRegister b);
1948 inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
1949 inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
1950 inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
1951
1952 // Fused multiply-accumulate instructions.
1953 // WARNING: Use only when rounding between the 2 parts is not desired.
1954 // Some floating point tck tests will fail if used incorrectly.
1955 inline void fmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1956 inline void fmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1957 inline void fmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1958 inline void fmadds_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1959 inline void fmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1960 inline void fmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1961 inline void fmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1962 inline void fmsubs_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1963 inline void fnmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1964 inline void fnmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1965 inline void fnmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1966 inline void fnmadds_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1967 inline void fnmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1968 inline void fnmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1969 inline void fnmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1970 inline void fnmsubs_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
1971
1972 // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
1973 inline void frsp( FloatRegister d, FloatRegister b);
1974 inline void fctid( FloatRegister d, FloatRegister b);
1975 inline void fctidz(FloatRegister d, FloatRegister b);
1976 inline void fctiw( FloatRegister d, FloatRegister b);
1977 inline void fctiwz(FloatRegister d, FloatRegister b);
1978 inline void fcfid( FloatRegister d, FloatRegister b);
1979 inline void fcfids(FloatRegister d, FloatRegister b);
1980
1981 // PPC 1, section 4.6.7 Floating-Point Compare Instructions
1982 inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
1983
1984 inline void fsqrt( FloatRegister d, FloatRegister b);
1985 inline void fsqrts(FloatRegister d, FloatRegister b);
1986
1987 // Vector instructions for >= Power6.
1988 inline void lvebx( VectorRegister d, Register s1, Register s2);
1989 inline void lvehx( VectorRegister d, Register s1, Register s2);
1990 inline void lvewx( VectorRegister d, Register s1, Register s2);
1991 inline void lvx( VectorRegister d, Register s1, Register s2);
1992 inline void lvxl( VectorRegister d, Register s1, Register s2);
1993 inline void stvebx( VectorRegister d, Register s1, Register s2);
1994 inline void stvehx( VectorRegister d, Register s1, Register s2);
1995 inline void stvewx( VectorRegister d, Register s1, Register s2);
1996 inline void stvx( VectorRegister d, Register s1, Register s2);
1997 inline void stvxl( VectorRegister d, Register s1, Register s2);
1998 inline void lvsl( VectorRegister d, Register s1, Register s2);
1999 inline void lvsr( VectorRegister d, Register s1, Register s2);
2000 inline void vpkpx( VectorRegister d, VectorRegister a, VectorRegister b);
2001 inline void vpkshss( VectorRegister d, VectorRegister a, VectorRegister b);
2002 inline void vpkswss( VectorRegister d, VectorRegister a, VectorRegister b);
2003 inline void vpkshus( VectorRegister d, VectorRegister a, VectorRegister b);
2004 inline void vpkswus( VectorRegister d, VectorRegister a, VectorRegister b);
2005 inline void vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b);
2006 inline void vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b);
2007 inline void vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b);
2008 inline void vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b);
2009 inline void vupkhpx( VectorRegister d, VectorRegister b);
2010 inline void vupkhsb( VectorRegister d, VectorRegister b);
2011 inline void vupkhsh( VectorRegister d, VectorRegister b);
2012 inline void vupklpx( VectorRegister d, VectorRegister b);
2013 inline void vupklsb( VectorRegister d, VectorRegister b);
2014 inline void vupklsh( VectorRegister d, VectorRegister b);
2015 inline void vmrghb( VectorRegister d, VectorRegister a, VectorRegister b);
2016 inline void vmrghw( VectorRegister d, VectorRegister a, VectorRegister b);
2017 inline void vmrghh( VectorRegister d, VectorRegister a, VectorRegister b);
2018 inline void vmrglb( VectorRegister d, VectorRegister a, VectorRegister b);
2019 inline void vmrglw( VectorRegister d, VectorRegister a, VectorRegister b);
2020 inline void vmrglh( VectorRegister d, VectorRegister a, VectorRegister b);
2021 inline void vsplt( VectorRegister d, int ui4, VectorRegister b);
2022 inline void vsplth( VectorRegister d, int ui3, VectorRegister b);
2023 inline void vspltw( VectorRegister d, int ui2, VectorRegister b);
2024 inline void vspltisb( VectorRegister d, int si5);
2025 inline void vspltish( VectorRegister d, int si5);
2026 inline void vspltisw( VectorRegister d, int si5);
2027 inline void vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2028 inline void vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2029 inline void vsl( VectorRegister d, VectorRegister a, VectorRegister b);
2030 inline void vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int si4);
2031 inline void vslo( VectorRegister d, VectorRegister a, VectorRegister b);
2032 inline void vsr( VectorRegister d, VectorRegister a, VectorRegister b);
2033 inline void vsro( VectorRegister d, VectorRegister a, VectorRegister b);
2034 inline void vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b);
2035 inline void vaddshs( VectorRegister d, VectorRegister a, VectorRegister b);
2036 inline void vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b);
2037 inline void vaddsws( VectorRegister d, VectorRegister a, VectorRegister b);
2038 inline void vaddubm( VectorRegister d, VectorRegister a, VectorRegister b);
2039 inline void vadduwm( VectorRegister d, VectorRegister a, VectorRegister b);
2040 inline void vadduhm( VectorRegister d, VectorRegister a, VectorRegister b);
2041 inline void vaddubs( VectorRegister d, VectorRegister a, VectorRegister b);
2042 inline void vadduws( VectorRegister d, VectorRegister a, VectorRegister b);
2043 inline void vadduhs( VectorRegister d, VectorRegister a, VectorRegister b);
2044 inline void vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b);
2045 inline void vsubshs( VectorRegister d, VectorRegister a, VectorRegister b);
2046 inline void vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b);
2047 inline void vsubsws( VectorRegister d, VectorRegister a, VectorRegister b);
2048 inline void vsububm( VectorRegister d, VectorRegister a, VectorRegister b);
2049 inline void vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b);
2050 inline void vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b);
2051 inline void vsububs( VectorRegister d, VectorRegister a, VectorRegister b);
2052 inline void vsubuws( VectorRegister d, VectorRegister a, VectorRegister b);
2053 inline void vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b);
2054 inline void vmulesb( VectorRegister d, VectorRegister a, VectorRegister b);
2055 inline void vmuleub( VectorRegister d, VectorRegister a, VectorRegister b);
2056 inline void vmulesh( VectorRegister d, VectorRegister a, VectorRegister b);
2057 inline void vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b);
2058 inline void vmulosb( VectorRegister d, VectorRegister a, VectorRegister b);
2059 inline void vmuloub( VectorRegister d, VectorRegister a, VectorRegister b);
2060 inline void vmulosh( VectorRegister d, VectorRegister a, VectorRegister b);
2061 inline void vmulouh( VectorRegister d, VectorRegister a, VectorRegister b);
2062 inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2063 inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
2064 inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2065 inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2066 inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2067 inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2068 inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2069 inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2070 inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2071 inline void vsumsws( VectorRegister d, VectorRegister a, VectorRegister b);
2072 inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
2073 inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
2074 inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
2075 inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
2076 inline void vavgsb( VectorRegister d, VectorRegister a, VectorRegister b);
2077 inline void vavgsw( VectorRegister d, VectorRegister a, VectorRegister b);
2078 inline void vavgsh( VectorRegister d, VectorRegister a, VectorRegister b);
2079 inline void vavgub( VectorRegister d, VectorRegister a, VectorRegister b);
2080 inline void vavguw( VectorRegister d, VectorRegister a, VectorRegister b);
2081 inline void vavguh( VectorRegister d, VectorRegister a, VectorRegister b);
2082 inline void vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b);
2083 inline void vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b);
2084 inline void vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b);
2085 inline void vmaxub( VectorRegister d, VectorRegister a, VectorRegister b);
2086 inline void vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b);
2087 inline void vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b);
2088 inline void vminsb( VectorRegister d, VectorRegister a, VectorRegister b);
2089 inline void vminsw( VectorRegister d, VectorRegister a, VectorRegister b);
2090 inline void vminsh( VectorRegister d, VectorRegister a, VectorRegister b);
2091 inline void vminub( VectorRegister d, VectorRegister a, VectorRegister b);
2092 inline void vminuw( VectorRegister d, VectorRegister a, VectorRegister b);
2093 inline void vminuh( VectorRegister d, VectorRegister a, VectorRegister b);
2094 inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
2095 inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
2096 inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
2097 inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
2098 inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
2099 inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
2100 inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
2101 inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
2102 inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
2103 inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
2104 inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
2105 inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
2106 inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
2107 inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
2108 inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
2109 inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
2110 inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
2111 inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
2112 inline void vand( VectorRegister d, VectorRegister a, VectorRegister b);
2113 inline void vandc( VectorRegister d, VectorRegister a, VectorRegister b);
2114 inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b);
2115 inline void vor( VectorRegister d, VectorRegister a, VectorRegister b);
2116 inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b);
2117 inline void vrld( VectorRegister d, VectorRegister a, VectorRegister b);
2118 inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b);
2119 inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b);
2120 inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b);
2121 inline void vslb( VectorRegister d, VectorRegister a, VectorRegister b);
2122 inline void vskw( VectorRegister d, VectorRegister a, VectorRegister b);
2123 inline void vslh( VectorRegister d, VectorRegister a, VectorRegister b);
2124 inline void vsrb( VectorRegister d, VectorRegister a, VectorRegister b);
2125 inline void vsrw( VectorRegister d, VectorRegister a, VectorRegister b);
2126 inline void vsrh( VectorRegister d, VectorRegister a, VectorRegister b);
2127 inline void vsrab( VectorRegister d, VectorRegister a, VectorRegister b);
2128 inline void vsraw( VectorRegister d, VectorRegister a, VectorRegister b);
2129 inline void vsrah( VectorRegister d, VectorRegister a, VectorRegister b);
2130 // Vector Floating-Point not implemented yet
2131 inline void mtvscr( VectorRegister b);
2132 inline void mfvscr( VectorRegister d);
2133
2134 // Vector-Scalar (VSX) instructions.
2135 inline void lxvd2x( VectorSRegister d, Register a);
2136 inline void lxvd2x( VectorSRegister d, Register a, Register b);
2137 inline void stxvd2x( VectorSRegister d, Register a);
2138 inline void stxvd2x( VectorSRegister d, Register a, Register b);
2139 inline void mtvrd( VectorRegister d, Register a);
2140 inline void mfvrd( Register a, VectorRegister d);
2141
2142 // Vector-Scalar (VSX) instructions.
2143 inline void mtfprd( FloatRegister d, Register a);
2144 inline void mtfprwa( FloatRegister d, Register a);
2145 inline void mffprd( Register a, FloatRegister d);
2146
2147 // AES (introduced with Power 8)
2148 inline void vcipher( VectorRegister d, VectorRegister a, VectorRegister b);
2149 inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
2150 inline void vncipher( VectorRegister d, VectorRegister a, VectorRegister b);
2151 inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
2152 inline void vsbox( VectorRegister d, VectorRegister a);
2153
2154 // SHA (introduced with Power 8)
2155 // Not yet implemented.
2156
2157 // Vector Binary Polynomial Multiplication (introduced with Power 8)
2158 inline void vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b);
2159 inline void vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b);
2160 inline void vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b);
2161 inline void vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b);
2162
2163 // Vector Permute and Xor (introduced with Power 8)
2164 inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2165
2166 // Transactional Memory instructions (introduced with Power 8)
2167 inline void tbegin_(); // R=0
2168 inline void tbeginrot_(); // R=1 Rollback-Only Transaction
2169 inline void tend_(); // A=0
2170 inline void tendall_(); // A=1
2171 inline void tabort_();
2172 inline void tabort_(Register a);
2173 inline void tabortwc_(int t, Register a, Register b);
2174 inline void tabortwci_(int t, Register a, int si);
2175 inline void tabortdc_(int t, Register a, Register b);
2176 inline void tabortdci_(int t, Register a, int si);
2177 inline void tsuspend_(); // tsr with L=0
2178 inline void tresume_(); // tsr with L=1
2179 inline void tcheck(int f);
2180
2181 static bool is_tbegin(int x) {
2182 return TBEGIN_OPCODE == (x & (0x3f << OPCODE_SHIFT | 0x3ff << 1));
2183 }
2184
2185 // The following encoders use r0 as second operand. These instructions
2186 // read r0 as '0'.
2187 inline void lwzx( Register d, Register s2);
2188 inline void lwz( Register d, int si16);
2189 inline void lwax( Register d, Register s2);
2190 inline void lwa( Register d, int si16);
2191 inline void lwbrx(Register d, Register s2);
2192 inline void lhzx( Register d, Register s2);
2193 inline void lhz( Register d, int si16);
2194 inline void lhax( Register d, Register s2);
2195 inline void lha( Register d, int si16);
2196 inline void lhbrx(Register d, Register s2);
2197 inline void lbzx( Register d, Register s2);
2198 inline void lbz( Register d, int si16);
2199 inline void ldx( Register d, Register s2);
2200 inline void ld( Register d, int si16);
2201 inline void ldbrx(Register d, Register s2);
2202 inline void stwx( Register d, Register s2);
2203 inline void stw( Register d, int si16);
2204 inline void stwbrx( Register d, Register s2);
2205 inline void sthx( Register d, Register s2);
2206 inline void sth( Register d, int si16);
2207 inline void sthbrx( Register d, Register s2);
2208 inline void stbx( Register d, Register s2);
2209 inline void stb( Register d, int si16);
2210 inline void stdx( Register d, Register s2);
2211 inline void std( Register d, int si16);
2212 inline void stdbrx( Register d, Register s2);
2213
2214 // PPC 2, section 3.2.1 Instruction Cache Instructions
2215 inline void icbi( Register s2);
2216 // PPC 2, section 3.2.2 Data Cache Instructions
2217 //inlinevoid dcba( Register s2); // Instruction for embedded processor only.
2218 inline void dcbz( Register s2);
2219 inline void dcbst( Register s2);
2220 inline void dcbf( Register s2);
2221 // dcache read hint
2222 inline void dcbt( Register s2);
2223 inline void dcbtct( Register s2, int ct);
2224 inline void dcbtds( Register s2, int ds);
2225 // dcache write hint
2226 inline void dcbtst( Register s2);
2227 inline void dcbtstct(Register s2, int ct);
2228
2229 // Atomics: use ra0mem to disallow R0 as base.
2230 inline void lbarx_unchecked(Register d, Register b, int eh1);
2231 inline void lharx_unchecked(Register d, Register b, int eh1);
2232 inline void lwarx_unchecked(Register d, Register b, int eh1);
2233 inline void ldarx_unchecked(Register d, Register b, int eh1);
2234 inline void lqarx_unchecked(Register d, Register b, int eh1);
2235 inline void lbarx( Register d, Register b, bool hint_exclusive_access);
2236 inline void lharx( Register d, Register b, bool hint_exclusive_access);
2237 inline void lwarx( Register d, Register b, bool hint_exclusive_access);
2238 inline void ldarx( Register d, Register b, bool hint_exclusive_access);
2239 inline void lqarx( Register d, Register b, bool hint_exclusive_access);
2240 inline void stbcx_(Register s, Register b);
2241 inline void sthcx_(Register s, Register b);
2242 inline void stwcx_(Register s, Register b);
2243 inline void stdcx_(Register s, Register b);
2244 inline void stqcx_(Register s, Register b);
2245 inline void lfs( FloatRegister d, int si16);
2246 inline void lfsx( FloatRegister d, Register b);
2247 inline void lfd( FloatRegister d, int si16);
2248 inline void lfdx( FloatRegister d, Register b);
2249 inline void stfs( FloatRegister s, int si16);
2250 inline void stfsx( FloatRegister s, Register b);
2251 inline void stfd( FloatRegister s, int si16);
2252 inline void stfdx( FloatRegister s, Register b);
2253 inline void lvebx( VectorRegister d, Register s2);
2254 inline void lvehx( VectorRegister d, Register s2);
2255 inline void lvewx( VectorRegister d, Register s2);
2256 inline void lvx( VectorRegister d, Register s2);
2257 inline void lvxl( VectorRegister d, Register s2);
2258 inline void stvebx(VectorRegister d, Register s2);
2259 inline void stvehx(VectorRegister d, Register s2);
2260 inline void stvewx(VectorRegister d, Register s2);
2261 inline void stvx( VectorRegister d, Register s2);
2262 inline void stvxl( VectorRegister d, Register s2);
2263 inline void lvsl( VectorRegister d, Register s2);
2264 inline void lvsr( VectorRegister d, Register s2);
2265
2266 // RegisterOrConstant versions.
2267 // These emitters choose between the versions using two registers and
2268 // those with register and immediate, depending on the content of roc.
2269 // If the constant is not encodable as immediate, instructions to
2270 // load the constant are emitted beforehand. Store instructions need a
2271 // tmp reg if the constant is not encodable as immediate.
2272 // Size unpredictable.
2273 void ld( Register d, RegisterOrConstant roc, Register s1 = noreg);
2274 void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
2275 void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2276 void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
2277 void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2278 void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2279 void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2280 void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2281 void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2282 void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2283 void add( Register d, RegisterOrConstant roc, Register s1);
2284 void subf(Register d, RegisterOrConstant roc, Register s1);
2285 void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
2286 // Load pointer d from s1+roc.
2287 void ld_ptr(Register d, RegisterOrConstant roc, Register s1 = noreg) { ld(d, roc, s1); }
2288
2289 // Emit several instructions to load a 64 bit constant. This issues a fixed
2290 // instruction pattern so that the constant can be patched later on.
2291 enum {
2292 load_const_size = 5 * BytesPerInstWord
2293 };
2294 void load_const(Register d, long a, Register tmp = noreg);
2295 inline void load_const(Register d, void* a, Register tmp = noreg);
2296 inline void load_const(Register d, Label& L, Register tmp = noreg);
2297 inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
2298 inline void load_const32(Register d, int i); // load signed int (patchable)
2299
2300 // Load a 64 bit constant, optimized, not identifyable.
2301 // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
2302 // 16 bit immediate offset. This is useful if the offset can be encoded in
2303 // a succeeding instruction.
2304 int load_const_optimized(Register d, long a, Register tmp = noreg, bool return_simm16_rest = false);
2305 inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
2306 return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
2307 }
2308
2309 // If return_simm16_rest, the return value needs to get added afterwards.
2310 int add_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false);
2311 inline int add_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2312 return add_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2313 }
2314
2315 // If return_simm16_rest, the return value needs to get added afterwards.
2316 inline int sub_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false) {
2317 return add_const_optimized(d, s, -x, tmp, return_simm16_rest);
2318 }
2319 inline int sub_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2320 return sub_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2321 }
2322
2323 // Creation
2324 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2325 #ifdef CHECK_DELAY
2326 delay_state = no_delay;
2327 #endif
2328 }
2329
2330 // Testing
2331 #ifndef PRODUCT
2332 void test_asm();
2333 #endif
2334 };
2335
2336
2337 #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP