1 /* 2 * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2017 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_INLINE_HPP 27 #define CPU_PPC_VM_ASSEMBLER_PPC_INLINE_HPP 28 29 #include "asm/assembler.inline.hpp" 30 #include "asm/codeBuffer.hpp" 31 #include "code/codeCache.hpp" 32 33 inline void Assembler::emit_int32(int x) { 34 AbstractAssembler::emit_int32(x); 35 } 36 37 inline void Assembler::emit_data(int x) { 38 emit_int32(x); 39 } 40 41 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) { 42 relocate(rtype); 43 emit_int32(x); 44 } 45 46 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) { 47 relocate(rspec); 48 emit_int32(x); 49 } 50 51 // Emit an address 52 inline address Assembler::emit_addr(const address addr) { 53 address start = pc(); 54 emit_address(addr); 55 return start; 56 } 57 58 #if !defined(ABI_ELFv2) 59 // Emit a function descriptor with the specified entry point, TOC, and 60 // ENV. If the entry point is NULL, the descriptor will point just 61 // past the descriptor. 62 inline address Assembler::emit_fd(address entry, address toc, address env) { 63 FunctionDescriptor* fd = (FunctionDescriptor*)pc(); 64 65 assert(sizeof(FunctionDescriptor) == 3*sizeof(address), "function descriptor size"); 66 67 (void)emit_addr(); 68 (void)emit_addr(); 69 (void)emit_addr(); 70 71 fd->set_entry(entry == NULL ? pc() : entry); 72 fd->set_toc(toc); 73 fd->set_env(env); 74 75 return (address)fd; 76 } 77 #endif 78 79 // Issue an illegal instruction. 0 is guaranteed to be an illegal instruction. 80 inline void Assembler::illtrap() { Assembler::emit_int32(0); } 81 inline bool Assembler::is_illtrap(int x) { return x == 0; } 82 83 // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions 84 inline void Assembler::addi( Register d, Register a, int si16) { assert(a != R0, "r0 not allowed"); addi_r0ok( d, a, si16); } 85 inline void Assembler::addis( Register d, Register a, int si16) { assert(a != R0, "r0 not allowed"); addis_r0ok(d, a, si16); } 86 inline void Assembler::addi_r0ok(Register d,Register a,int si16) { emit_int32(ADDI_OPCODE | rt(d) | ra(a) | simm(si16, 16)); } 87 inline void Assembler::addis_r0ok(Register d,Register a,int si16) { emit_int32(ADDIS_OPCODE | rt(d) | ra(a) | simm(si16, 16)); } 88 inline void Assembler::addic_( Register d, Register a, int si16) { emit_int32(ADDIC__OPCODE | rt(d) | ra(a) | simm(si16, 16)); } 89 inline void Assembler::subfic( Register d, Register a, int si16) { emit_int32(SUBFIC_OPCODE | rt(d) | ra(a) | simm(si16, 16)); } 90 inline void Assembler::add( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 91 inline void Assembler::add_( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 92 inline void Assembler::subf( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 93 inline void Assembler::sub( Register d, Register a, Register b) { subf(d, b, a); } 94 inline void Assembler::subf_( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 95 inline void Assembler::addc( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 96 inline void Assembler::addc_( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 97 inline void Assembler::subfc( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 98 inline void Assembler::subfc_( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 99 inline void Assembler::adde( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 100 inline void Assembler::adde_( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 101 inline void Assembler::subfe( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 102 inline void Assembler::subfe_( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 103 inline void Assembler::addme( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } 104 inline void Assembler::addme_( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } 105 inline void Assembler::subfme( Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } 106 inline void Assembler::subfme_(Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } 107 inline void Assembler::addze( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } 108 inline void Assembler::addze_( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } 109 inline void Assembler::subfze( Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } 110 inline void Assembler::subfze_(Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } 111 inline void Assembler::neg( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(0) | rc(0)); } 112 inline void Assembler::neg_( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(0) | rc(1)); } 113 inline void Assembler::mulli( Register d, Register a, int si16) { emit_int32(MULLI_OPCODE | rt(d) | ra(a) | simm(si16, 16)); } 114 inline void Assembler::mulld( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 115 inline void Assembler::mulld_( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 116 inline void Assembler::mullw( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 117 inline void Assembler::mullw_( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 118 inline void Assembler::mulhw( Register d, Register a, Register b) { emit_int32(MULHW_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); } 119 inline void Assembler::mulhw_( Register d, Register a, Register b) { emit_int32(MULHW_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); } 120 inline void Assembler::mulhwu( Register d, Register a, Register b) { emit_int32(MULHWU_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); } 121 inline void Assembler::mulhwu_(Register d, Register a, Register b) { emit_int32(MULHWU_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); } 122 inline void Assembler::mulhd( Register d, Register a, Register b) { emit_int32(MULHD_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); } 123 inline void Assembler::mulhd_( Register d, Register a, Register b) { emit_int32(MULHD_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); } 124 inline void Assembler::mulhdu( Register d, Register a, Register b) { emit_int32(MULHDU_OPCODE | rt(d) | ra(a) | rb(b) | rc(0)); } 125 inline void Assembler::mulhdu_(Register d, Register a, Register b) { emit_int32(MULHDU_OPCODE | rt(d) | ra(a) | rb(b) | rc(1)); } 126 inline void Assembler::divd( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 127 inline void Assembler::divd_( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 128 inline void Assembler::divw( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(0)); } 129 inline void Assembler::divw_( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(0) | rc(1)); } 130 131 // Fixed-Point Arithmetic Instructions with Overflow detection 132 inline void Assembler::addo( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 133 inline void Assembler::addo_( Register d, Register a, Register b) { emit_int32(ADD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 134 inline void Assembler::subfo( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 135 inline void Assembler::subfo_( Register d, Register a, Register b) { emit_int32(SUBF_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 136 inline void Assembler::addco( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 137 inline void Assembler::addco_( Register d, Register a, Register b) { emit_int32(ADDC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 138 inline void Assembler::subfco( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 139 inline void Assembler::subfco_( Register d, Register a, Register b) { emit_int32(SUBFC_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 140 inline void Assembler::addeo( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 141 inline void Assembler::addeo_( Register d, Register a, Register b) { emit_int32(ADDE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 142 inline void Assembler::subfeo( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 143 inline void Assembler::subfeo_( Register d, Register a, Register b) { emit_int32(SUBFE_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 144 inline void Assembler::addmeo( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } 145 inline void Assembler::addmeo_( Register d, Register a) { emit_int32(ADDME_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } 146 inline void Assembler::subfmeo( Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } 147 inline void Assembler::subfmeo_(Register d, Register a) { emit_int32(SUBFME_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } 148 inline void Assembler::addzeo( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } 149 inline void Assembler::addzeo_( Register d, Register a) { emit_int32(ADDZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } 150 inline void Assembler::subfzeo( Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } 151 inline void Assembler::subfzeo_(Register d, Register a) { emit_int32(SUBFZE_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } 152 inline void Assembler::nego( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(1) | rc(0)); } 153 inline void Assembler::nego_( Register d, Register a) { emit_int32(NEG_OPCODE | rt(d) | ra(a) | oe(1) | rc(1)); } 154 inline void Assembler::mulldo( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 155 inline void Assembler::mulldo_( Register d, Register a, Register b) { emit_int32(MULLD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 156 inline void Assembler::mullwo( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 157 inline void Assembler::mullwo_( Register d, Register a, Register b) { emit_int32(MULLW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 158 inline void Assembler::divdo( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 159 inline void Assembler::divdo_( Register d, Register a, Register b) { emit_int32(DIVD_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 160 inline void Assembler::divwo( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(0)); } 161 inline void Assembler::divwo_( Register d, Register a, Register b) { emit_int32(DIVW_OPCODE | rt(d) | ra(a) | rb(b) | oe(1) | rc(1)); } 162 163 // extended mnemonics 164 inline void Assembler::li( Register d, int si16) { Assembler::addi_r0ok( d, R0, si16); } 165 inline void Assembler::lis( Register d, int si16) { Assembler::addis_r0ok(d, R0, si16); } 166 inline void Assembler::addir(Register d, int si16, Register a) { Assembler::addi(d, a, si16); } 167 168 // PPC 1, section 3.3.9, Fixed-Point Compare Instructions 169 inline void Assembler::cmpi( ConditionRegister f, int l, Register a, int si16) { emit_int32( CMPI_OPCODE | bf(f) | l10(l) | ra(a) | simm(si16,16)); } 170 inline void Assembler::cmp( ConditionRegister f, int l, Register a, Register b) { emit_int32( CMP_OPCODE | bf(f) | l10(l) | ra(a) | rb(b)); } 171 inline void Assembler::cmpli( ConditionRegister f, int l, Register a, int ui16) { emit_int32( CMPLI_OPCODE | bf(f) | l10(l) | ra(a) | uimm(ui16,16)); } 172 inline void Assembler::cmpl( ConditionRegister f, int l, Register a, Register b) { emit_int32( CMPL_OPCODE | bf(f) | l10(l) | ra(a) | rb(b)); } 173 174 // extended mnemonics of Compare Instructions 175 inline void Assembler::cmpwi( ConditionRegister crx, Register a, int si16) { Assembler::cmpi( crx, 0, a, si16); } 176 inline void Assembler::cmpdi( ConditionRegister crx, Register a, int si16) { Assembler::cmpi( crx, 1, a, si16); } 177 inline void Assembler::cmpw( ConditionRegister crx, Register a, Register b) { Assembler::cmp( crx, 0, a, b); } 178 inline void Assembler::cmpd( ConditionRegister crx, Register a, Register b) { Assembler::cmp( crx, 1, a, b); } 179 inline void Assembler::cmplwi(ConditionRegister crx, Register a, int ui16) { Assembler::cmpli(crx, 0, a, ui16); } 180 inline void Assembler::cmpldi(ConditionRegister crx, Register a, int ui16) { Assembler::cmpli(crx, 1, a, ui16); } 181 inline void Assembler::cmplw( ConditionRegister crx, Register a, Register b) { Assembler::cmpl( crx, 0, a, b); } 182 inline void Assembler::cmpld( ConditionRegister crx, Register a, Register b) { Assembler::cmpl( crx, 1, a, b); } 183 184 inline void Assembler::isel(Register d, Register a, Register b, int c) { guarantee(VM_Version::has_isel(), "opcode not supported on this hardware"); 185 emit_int32(ISEL_OPCODE | rt(d) | ra(a) | rb(b) | bc(c)); } 186 187 // PPC 1, section 3.3.11, Fixed-Point Logical Instructions 188 inline void Assembler::andi_( Register a, Register s, int ui16) { emit_int32(ANDI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } 189 inline void Assembler::andis_( Register a, Register s, int ui16) { emit_int32(ANDIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } 190 inline void Assembler::ori( Register a, Register s, int ui16) { emit_int32(ORI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } 191 inline void Assembler::oris( Register a, Register s, int ui16) { emit_int32(ORIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } 192 inline void Assembler::xori( Register a, Register s, int ui16) { emit_int32(XORI_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } 193 inline void Assembler::xoris( Register a, Register s, int ui16) { emit_int32(XORIS_OPCODE | rta(a) | rs(s) | uimm(ui16, 16)); } 194 inline void Assembler::andr( Register a, Register s, Register b) { emit_int32(AND_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 195 inline void Assembler::and_( Register a, Register s, Register b) { emit_int32(AND_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 196 197 inline void Assembler::or_unchecked(Register a, Register s, Register b){ emit_int32(OR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 198 inline void Assembler::orr( Register a, Register s, Register b) { if (a==s && s==b) { Assembler::nop(); } else { Assembler::or_unchecked(a,s,b); } } 199 inline void Assembler::or_( Register a, Register s, Register b) { emit_int32(OR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 200 inline void Assembler::xorr( Register a, Register s, Register b) { emit_int32(XOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 201 inline void Assembler::xor_( Register a, Register s, Register b) { emit_int32(XOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 202 inline void Assembler::nand( Register a, Register s, Register b) { emit_int32(NAND_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 203 inline void Assembler::nand_( Register a, Register s, Register b) { emit_int32(NAND_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 204 inline void Assembler::nor( Register a, Register s, Register b) { emit_int32(NOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 205 inline void Assembler::nor_( Register a, Register s, Register b) { emit_int32(NOR_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 206 inline void Assembler::andc( Register a, Register s, Register b) { emit_int32(ANDC_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 207 inline void Assembler::andc_( Register a, Register s, Register b) { emit_int32(ANDC_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 208 inline void Assembler::orc( Register a, Register s, Register b) { emit_int32(ORC_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 209 inline void Assembler::orc_( Register a, Register s, Register b) { emit_int32(ORC_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 210 inline void Assembler::extsb( Register a, Register s) { emit_int32(EXTSB_OPCODE | rta(a) | rs(s) | rc(0)); } 211 inline void Assembler::extsb_( Register a, Register s) { emit_int32(EXTSB_OPCODE | rta(a) | rs(s) | rc(1)); } 212 inline void Assembler::extsh( Register a, Register s) { emit_int32(EXTSH_OPCODE | rta(a) | rs(s) | rc(0)); } 213 inline void Assembler::extsh_( Register a, Register s) { emit_int32(EXTSH_OPCODE | rta(a) | rs(s) | rc(1)); } 214 inline void Assembler::extsw( Register a, Register s) { emit_int32(EXTSW_OPCODE | rta(a) | rs(s) | rc(0)); } 215 inline void Assembler::extsw_( Register a, Register s) { emit_int32(EXTSW_OPCODE | rta(a) | rs(s) | rc(1)); } 216 217 // extended mnemonics 218 inline void Assembler::nop() { Assembler::ori(R0, R0, 0); } 219 // NOP for FP and BR units (different versions to allow them to be in one group) 220 inline void Assembler::fpnop0() { Assembler::fmr(F30, F30); } 221 inline void Assembler::fpnop1() { Assembler::fmr(F31, F31); } 222 inline void Assembler::brnop0() { Assembler::mcrf(CCR2, CCR2); } 223 inline void Assembler::brnop1() { Assembler::mcrf(CCR3, CCR3); } 224 inline void Assembler::brnop2() { Assembler::mcrf(CCR4, CCR4); } 225 226 inline void Assembler::mr( Register d, Register s) { Assembler::orr(d, s, s); } 227 inline void Assembler::ori_opt( Register d, int ui16) { if (ui16!=0) Assembler::ori( d, d, ui16); } 228 inline void Assembler::oris_opt(Register d, int ui16) { if (ui16!=0) Assembler::oris(d, d, ui16); } 229 230 inline void Assembler::endgroup() { Assembler::ori(R1, R1, 0); } 231 232 // count instructions 233 inline void Assembler::cntlzw( Register a, Register s) { emit_int32(CNTLZW_OPCODE | rta(a) | rs(s) | rc(0)); } 234 inline void Assembler::cntlzw_( Register a, Register s) { emit_int32(CNTLZW_OPCODE | rta(a) | rs(s) | rc(1)); } 235 inline void Assembler::cntlzd( Register a, Register s) { emit_int32(CNTLZD_OPCODE | rta(a) | rs(s) | rc(0)); } 236 inline void Assembler::cntlzd_( Register a, Register s) { emit_int32(CNTLZD_OPCODE | rta(a) | rs(s) | rc(1)); } 237 238 // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions 239 inline void Assembler::sld( Register a, Register s, Register b) { emit_int32(SLD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 240 inline void Assembler::sld_( Register a, Register s, Register b) { emit_int32(SLD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 241 inline void Assembler::slw( Register a, Register s, Register b) { emit_int32(SLW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 242 inline void Assembler::slw_( Register a, Register s, Register b) { emit_int32(SLW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 243 inline void Assembler::srd( Register a, Register s, Register b) { emit_int32(SRD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 244 inline void Assembler::srd_( Register a, Register s, Register b) { emit_int32(SRD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 245 inline void Assembler::srw( Register a, Register s, Register b) { emit_int32(SRW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 246 inline void Assembler::srw_( Register a, Register s, Register b) { emit_int32(SRW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 247 inline void Assembler::srad( Register a, Register s, Register b) { emit_int32(SRAD_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 248 inline void Assembler::srad_( Register a, Register s, Register b) { emit_int32(SRAD_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 249 inline void Assembler::sraw( Register a, Register s, Register b) { emit_int32(SRAW_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 250 inline void Assembler::sraw_( Register a, Register s, Register b) { emit_int32(SRAW_OPCODE | rta(a) | rs(s) | rb(b) | rc(1)); } 251 inline void Assembler::sradi( Register a, Register s, int sh6) { emit_int32(SRADI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | rc(0)); } 252 inline void Assembler::sradi_( Register a, Register s, int sh6) { emit_int32(SRADI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | rc(1)); } 253 inline void Assembler::srawi( Register a, Register s, int sh5) { emit_int32(SRAWI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | rc(0)); } 254 inline void Assembler::srawi_( Register a, Register s, int sh5) { emit_int32(SRAWI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | rc(1)); } 255 256 // extended mnemonics for Shift Instructions 257 inline void Assembler::sldi( Register a, Register s, int sh6) { Assembler::rldicr(a, s, sh6, 63-sh6); } 258 inline void Assembler::sldi_( Register a, Register s, int sh6) { Assembler::rldicr_(a, s, sh6, 63-sh6); } 259 inline void Assembler::slwi( Register a, Register s, int sh5) { Assembler::rlwinm(a, s, sh5, 0, 31-sh5); } 260 inline void Assembler::slwi_( Register a, Register s, int sh5) { Assembler::rlwinm_(a, s, sh5, 0, 31-sh5); } 261 inline void Assembler::srdi( Register a, Register s, int sh6) { Assembler::rldicl(a, s, 64-sh6, sh6); } 262 inline void Assembler::srdi_( Register a, Register s, int sh6) { Assembler::rldicl_(a, s, 64-sh6, sh6); } 263 inline void Assembler::srwi( Register a, Register s, int sh5) { Assembler::rlwinm(a, s, 32-sh5, sh5, 31); } 264 inline void Assembler::srwi_( Register a, Register s, int sh5) { Assembler::rlwinm_(a, s, 32-sh5, sh5, 31); } 265 266 inline void Assembler::clrrdi( Register a, Register s, int ui6) { Assembler::rldicr(a, s, 0, 63-ui6); } 267 inline void Assembler::clrrdi_( Register a, Register s, int ui6) { Assembler::rldicr_(a, s, 0, 63-ui6); } 268 inline void Assembler::clrldi( Register a, Register s, int ui6) { Assembler::rldicl(a, s, 0, ui6); } 269 inline void Assembler::clrldi_( Register a, Register s, int ui6) { Assembler::rldicl_(a, s, 0, ui6); } 270 inline void Assembler::clrlsldi( Register a, Register s, int clrl6, int shl6) { Assembler::rldic( a, s, shl6, clrl6-shl6); } 271 inline void Assembler::clrlsldi_(Register a, Register s, int clrl6, int shl6) { Assembler::rldic_(a, s, shl6, clrl6-shl6); } 272 inline void Assembler::extrdi( Register a, Register s, int n, int b){ Assembler::rldicl(a, s, b+n, 64-n); } 273 // testbit with condition register. 274 inline void Assembler::testbitdi(ConditionRegister cr, Register a, Register s, int ui6) { 275 if (cr == CCR0) { 276 Assembler::rldicr_(a, s, 63-ui6, 0); 277 } else { 278 Assembler::rldicr(a, s, 63-ui6, 0); 279 Assembler::cmpdi(cr, a, 0); 280 } 281 } 282 283 // rotate instructions 284 inline void Assembler::rotldi( Register a, Register s, int n) { Assembler::rldicl(a, s, n, 0); } 285 inline void Assembler::rotrdi( Register a, Register s, int n) { Assembler::rldicl(a, s, 64-n, 0); } 286 inline void Assembler::rotlwi( Register a, Register s, int n) { Assembler::rlwinm(a, s, n, 0, 31); } 287 inline void Assembler::rotrwi( Register a, Register s, int n) { Assembler::rlwinm(a, s, 32-n, 0, 31); } 288 289 inline void Assembler::rldic( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIC_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); } 290 inline void Assembler::rldic_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIC_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); } 291 inline void Assembler::rldicr( Register a, Register s, int sh6, int mb6) { emit_int32(RLDICR_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); } 292 inline void Assembler::rldicr_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDICR_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); } 293 inline void Assembler::rldicl( Register a, Register s, int sh6, int me6) { emit_int32(RLDICL_OPCODE | rta(a) | rs(s) | sh162030(sh6) | me2126(me6) | rc(0)); } 294 inline void Assembler::rldicl_( Register a, Register s, int sh6, int me6) { emit_int32(RLDICL_OPCODE | rta(a) | rs(s) | sh162030(sh6) | me2126(me6) | rc(1)); } 295 inline void Assembler::rlwinm( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWINM_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(0)); } 296 inline void Assembler::rlwinm_( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWINM_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(1)); } 297 inline void Assembler::rldimi( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIMI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(0)); } 298 inline void Assembler::rlwimi( Register a, Register s, int sh5, int mb5, int me5){ emit_int32(RLWIMI_OPCODE | rta(a) | rs(s) | sh1620(sh5) | mb2125(mb5) | me2630(me5) | rc(0)); } 299 inline void Assembler::rldimi_( Register a, Register s, int sh6, int mb6) { emit_int32(RLDIMI_OPCODE | rta(a) | rs(s) | sh162030(sh6) | mb2126(mb6) | rc(1)); } 300 inline void Assembler::insrdi( Register a, Register s, int n, int b) { Assembler::rldimi(a, s, 64-(b+n), b); } 301 inline void Assembler::insrwi( Register a, Register s, int n, int b) { Assembler::rlwimi(a, s, 32-(b+n), b, b+n-1); } 302 303 // PPC 1, section 3.3.2 Fixed-Point Load Instructions 304 inline void Assembler::lwzx( Register d, Register s1, Register s2) { emit_int32(LWZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 305 inline void Assembler::lwz( Register d, int si16, Register s1) { emit_int32(LWZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));} 306 inline void Assembler::lwzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LWZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));} 307 308 inline void Assembler::lwax( Register d, Register s1, Register s2) { emit_int32(LWAX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 309 inline void Assembler::lwa( Register d, int si16, Register s1) { emit_int32(LWA_OPCODE | rt(d) | ds(si16) | ra0mem(s1));} 310 311 inline void Assembler::lwbrx( Register d, Register s1, Register s2) { emit_int32(LWBRX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 312 313 inline void Assembler::lhzx( Register d, Register s1, Register s2) { emit_int32(LHZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 314 inline void Assembler::lhz( Register d, int si16, Register s1) { emit_int32(LHZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));} 315 inline void Assembler::lhzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LHZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));} 316 317 inline void Assembler::lhbrx( Register d, Register s1, Register s2) { emit_int32(LHBRX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 318 319 inline void Assembler::lhax( Register d, Register s1, Register s2) { emit_int32(LHAX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 320 inline void Assembler::lha( Register d, int si16, Register s1) { emit_int32(LHA_OPCODE | rt(d) | d1(si16) | ra0mem(s1));} 321 inline void Assembler::lhau( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LHAU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));} 322 323 inline void Assembler::lbzx( Register d, Register s1, Register s2) { emit_int32(LBZX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 324 inline void Assembler::lbz( Register d, int si16, Register s1) { emit_int32(LBZ_OPCODE | rt(d) | d1(si16) | ra0mem(s1));} 325 inline void Assembler::lbzu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LBZU_OPCODE | rt(d) | d1(si16) | rta0mem(s1));} 326 327 inline void Assembler::ld( Register d, int si16, Register s1) { emit_int32(LD_OPCODE | rt(d) | ds(si16) | ra0mem(s1));} 328 inline void Assembler::ldx( Register d, Register s1, Register s2) { emit_int32(LDX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 329 inline void Assembler::ldu( Register d, int si16, Register s1) { assert(d != s1, "according to ibm manual"); emit_int32(LDU_OPCODE | rt(d) | ds(si16) | rta0mem(s1));} 330 inline void Assembler::ldbrx( Register d, Register s1, Register s2) { emit_int32(LDBRX_OPCODE | rt(d) | ra0mem(s1) | rb(s2));} 331 332 inline void Assembler::ld_ptr(Register d, int b, Register s1) { ld(d, b, s1); } 333 DEBUG_ONLY(inline void Assembler::ld_ptr(Register d, ByteSize b, Register s1) { ld(d, in_bytes(b), s1); }) 334 335 // PPC 1, section 3.3.3 Fixed-Point Store Instructions 336 inline void Assembler::stwx( Register d, Register s1, Register s2) { emit_int32(STWX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} 337 inline void Assembler::stw( Register d, int si16, Register s1) { emit_int32(STW_OPCODE | rs(d) | d1(si16) | ra0mem(s1));} 338 inline void Assembler::stwu( Register d, int si16, Register s1) { emit_int32(STWU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));} 339 inline void Assembler::stwbrx( Register d, Register s1, Register s2) { emit_int32(STWBRX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} 340 341 inline void Assembler::sthx( Register d, Register s1, Register s2) { emit_int32(STHX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} 342 inline void Assembler::sth( Register d, int si16, Register s1) { emit_int32(STH_OPCODE | rs(d) | d1(si16) | ra0mem(s1));} 343 inline void Assembler::sthu( Register d, int si16, Register s1) { emit_int32(STHU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));} 344 inline void Assembler::sthbrx( Register d, Register s1, Register s2) { emit_int32(STHBRX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} 345 346 inline void Assembler::stbx( Register d, Register s1, Register s2) { emit_int32(STBX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} 347 inline void Assembler::stb( Register d, int si16, Register s1) { emit_int32(STB_OPCODE | rs(d) | d1(si16) | ra0mem(s1));} 348 inline void Assembler::stbu( Register d, int si16, Register s1) { emit_int32(STBU_OPCODE | rs(d) | d1(si16) | rta0mem(s1));} 349 350 inline void Assembler::std( Register d, int si16, Register s1) { emit_int32(STD_OPCODE | rs(d) | ds(si16) | ra0mem(s1));} 351 inline void Assembler::stdx( Register d, Register s1, Register s2) { emit_int32(STDX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} 352 inline void Assembler::stdu( Register d, int si16, Register s1) { emit_int32(STDU_OPCODE | rs(d) | ds(si16) | rta0mem(s1));} 353 inline void Assembler::stdux(Register s, Register a, Register b) { emit_int32(STDUX_OPCODE| rs(s) | rta0mem(a) | rb(b));} 354 inline void Assembler::stdbrx( Register d, Register s1, Register s2) { emit_int32(STDBRX_OPCODE | rs(d) | ra0mem(s1) | rb(s2));} 355 356 inline void Assembler::st_ptr(Register d, int b, Register s1) { std(d, b, s1); } 357 DEBUG_ONLY(inline void Assembler::st_ptr(Register d, ByteSize b, Register s1) { std(d, in_bytes(b), s1); }) 358 359 // PPC 1, section 3.3.13 Move To/From System Register Instructions 360 inline void Assembler::mtlr( Register s1) { emit_int32(MTLR_OPCODE | rs(s1)); } 361 inline void Assembler::mflr( Register d ) { emit_int32(MFLR_OPCODE | rt(d)); } 362 inline void Assembler::mtctr(Register s1) { emit_int32(MTCTR_OPCODE | rs(s1)); } 363 inline void Assembler::mfctr(Register d ) { emit_int32(MFCTR_OPCODE | rt(d)); } 364 inline void Assembler::mtcrf(int afxm, Register s){ emit_int32(MTCRF_OPCODE | fxm(afxm) | rs(s)); } 365 inline void Assembler::mfcr( Register d ) { emit_int32(MFCR_OPCODE | rt(d)); } 366 inline void Assembler::mcrf( ConditionRegister crd, ConditionRegister cra) 367 { emit_int32(MCRF_OPCODE | bf(crd) | bfa(cra)); } 368 inline void Assembler::mtcr( Register s) { Assembler::mtcrf(0xff, s); } 369 370 // Special purpose registers 371 // Exception Register 372 inline void Assembler::mtxer(Register s1) { emit_int32(MTXER_OPCODE | rs(s1)); } 373 inline void Assembler::mfxer(Register d ) { emit_int32(MFXER_OPCODE | rt(d)); } 374 // Vector Register Save Register 375 inline void Assembler::mtvrsave(Register s1) { emit_int32(MTVRSAVE_OPCODE | rs(s1)); } 376 inline void Assembler::mfvrsave(Register d ) { emit_int32(MFVRSAVE_OPCODE | rt(d)); } 377 // Timebase 378 inline void Assembler::mftb(Register d ) { emit_int32(MFTB_OPCODE | rt(d)); } 379 // Introduced with Power 8: 380 // Data Stream Control Register 381 inline void Assembler::mtdscr(Register s1) { emit_int32(MTDSCR_OPCODE | rs(s1)); } 382 inline void Assembler::mfdscr(Register d ) { emit_int32(MFDSCR_OPCODE | rt(d)); } 383 // Transactional Memory Registers 384 inline void Assembler::mftfhar(Register d ) { emit_int32(MFTFHAR_OPCODE | rt(d)); } 385 inline void Assembler::mftfiar(Register d ) { emit_int32(MFTFIAR_OPCODE | rt(d)); } 386 inline void Assembler::mftexasr(Register d ) { emit_int32(MFTEXASR_OPCODE | rt(d)); } 387 inline void Assembler::mftexasru(Register d ) { emit_int32(MFTEXASRU_OPCODE | rt(d)); } 388 389 // SAP JVM 2006-02-13 PPC branch instruction. 390 // PPC 1, section 2.4.1 Branch Instructions 391 inline void Assembler::b( address a, relocInfo::relocType rt) { emit_data(BXX_OPCODE| li(disp( intptr_t(a), intptr_t(pc()))) |aa(0)|lk(0), rt); } 392 inline void Assembler::b( Label& L) { b( target(L)); } 393 inline void Assembler::bl(address a, relocInfo::relocType rt) { emit_data(BXX_OPCODE| li(disp( intptr_t(a), intptr_t(pc()))) |aa(0)|lk(1), rt); } 394 inline void Assembler::bl(Label& L) { bl(target(L)); } 395 inline void Assembler::bc( int boint, int biint, address a, relocInfo::relocType rt) { emit_data(BCXX_OPCODE| bo(boint) | bi(biint) | bd(disp( intptr_t(a), intptr_t(pc()))) | aa(0) | lk(0), rt); } 396 inline void Assembler::bc( int boint, int biint, Label& L) { bc(boint, biint, target(L)); } 397 inline void Assembler::bcl(int boint, int biint, address a, relocInfo::relocType rt) { emit_data(BCXX_OPCODE| bo(boint) | bi(biint) | bd(disp( intptr_t(a), intptr_t(pc()))) | aa(0)|lk(1)); } 398 inline void Assembler::bcl(int boint, int biint, Label& L) { bcl(boint, biint, target(L)); } 399 400 inline void Assembler::bclr( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCLR_OPCODE | bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(0), rt); } 401 inline void Assembler::bclrl( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCLR_OPCODE | bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(1), rt); } 402 inline void Assembler::bcctr( int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCCTR_OPCODE| bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(0), rt); } 403 inline void Assembler::bcctrl(int boint, int biint, int bhint, relocInfo::relocType rt) { emit_data(BCCTR_OPCODE| bo(boint) | bi(biint) | bh(bhint) | aa(0) | lk(1), rt); } 404 405 // helper function for b 406 inline bool Assembler::is_within_range_of_b(address a, address pc) { 407 // Guard against illegal branch targets, e.g. -1 (see CompiledStaticCall and ad-file). 408 if ((((uint64_t)a) & 0x3) != 0) return false; 409 410 const int range = 1 << (29-6); // li field is from bit 6 to bit 29. 411 int value = disp(intptr_t(a), intptr_t(pc)); 412 bool result = -range <= value && value < range-1; 413 #ifdef ASSERT 414 if (result) li(value); // Assert that value is in correct range. 415 #endif 416 return result; 417 } 418 419 // helper functions for bcxx. 420 inline bool Assembler::is_within_range_of_bcxx(address a, address pc) { 421 // Guard against illegal branch targets, e.g. -1 (see CompiledStaticCall and ad-file). 422 if ((((uint64_t)a) & 0x3) != 0) return false; 423 424 const int range = 1 << (29-16); // bd field is from bit 16 to bit 29. 425 int value = disp(intptr_t(a), intptr_t(pc)); 426 bool result = -range <= value && value < range-1; 427 #ifdef ASSERT 428 if (result) bd(value); // Assert that value is in correct range. 429 #endif 430 return result; 431 } 432 433 // Get the destination of a bxx branch (b, bl, ba, bla). 434 address Assembler::bxx_destination(address baddr) { return bxx_destination(*(int*)baddr, baddr); } 435 address Assembler::bxx_destination(int instr, address pc) { return (address)bxx_destination_offset(instr, (intptr_t)pc); } 436 intptr_t Assembler::bxx_destination_offset(int instr, intptr_t bxx_pos) { 437 intptr_t displ = inv_li_field(instr); 438 return bxx_pos + displ; 439 } 440 441 // Extended mnemonics for Branch Instructions 442 inline void Assembler::blt(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, less), L); } 443 inline void Assembler::bgt(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, greater), L); } 444 inline void Assembler::beq(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, equal), L); } 445 inline void Assembler::bso(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs1, bi0(crx, summary_overflow), L); } 446 inline void Assembler::bge(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, less), L); } 447 inline void Assembler::ble(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, greater), L); } 448 inline void Assembler::bne(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, equal), L); } 449 inline void Assembler::bns(ConditionRegister crx, Label& L) { Assembler::bc(bcondCRbiIs0, bi0(crx, summary_overflow), L); } 450 451 // Branch instructions with static prediction hints. 452 inline void Assembler::blt_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, less), L); } 453 inline void Assembler::bgt_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, greater), L); } 454 inline void Assembler::beq_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, equal), L); } 455 inline void Assembler::bso_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsTaken, bi0(crx, summary_overflow), L); } 456 inline void Assembler::bge_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, less), L); } 457 inline void Assembler::ble_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, greater), L); } 458 inline void Assembler::bne_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, equal), L); } 459 inline void Assembler::bns_predict_taken (ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsTaken, bi0(crx, summary_overflow), L); } 460 inline void Assembler::blt_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, less), L); } 461 inline void Assembler::bgt_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, greater), L); } 462 inline void Assembler::beq_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, equal), L); } 463 inline void Assembler::bso_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs1_bhintIsNotTaken, bi0(crx, summary_overflow), L); } 464 inline void Assembler::bge_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, less), L); } 465 inline void Assembler::ble_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, greater), L); } 466 inline void Assembler::bne_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, equal), L); } 467 inline void Assembler::bns_predict_not_taken(ConditionRegister crx, Label& L) { bc(bcondCRbiIs0_bhintIsNotTaken, bi0(crx, summary_overflow), L); } 468 469 // For use in conjunction with testbitdi: 470 inline void Assembler::btrue( ConditionRegister crx, Label& L) { Assembler::bne(crx, L); } 471 inline void Assembler::bfalse(ConditionRegister crx, Label& L) { Assembler::beq(crx, L); } 472 473 inline void Assembler::bltl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, less), L); } 474 inline void Assembler::bgtl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, greater), L); } 475 inline void Assembler::beql(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, equal), L); } 476 inline void Assembler::bsol(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs1, bi0(crx, summary_overflow), L); } 477 inline void Assembler::bgel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, less), L); } 478 inline void Assembler::blel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, greater), L); } 479 inline void Assembler::bnel(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, equal), L); } 480 inline void Assembler::bnsl(ConditionRegister crx, Label& L) { Assembler::bcl(bcondCRbiIs0, bi0(crx, summary_overflow), L); } 481 482 // Extended mnemonics for Branch Instructions via LR. 483 // We use `blr' for returns. 484 inline void Assembler::blr(relocInfo::relocType rt) { Assembler::bclr(bcondAlways, 0, bhintbhBCLRisReturn, rt); } 485 486 // Extended mnemonics for Branch Instructions with CTR. 487 // Bdnz means `decrement CTR and jump to L if CTR is not zero'. 488 inline void Assembler::bdnz(Label& L) { Assembler::bc(16, 0, L); } 489 // Decrement and branch if result is zero. 490 inline void Assembler::bdz(Label& L) { Assembler::bc(18, 0, L); } 491 // We use `bctr[l]' for jumps/calls in function descriptor glue 492 // code, e.g. for calls to runtime functions. 493 inline void Assembler::bctr( relocInfo::relocType rt) { Assembler::bcctr(bcondAlways, 0, bhintbhBCCTRisNotReturnButSame, rt); } 494 inline void Assembler::bctrl(relocInfo::relocType rt) { Assembler::bcctrl(bcondAlways, 0, bhintbhBCCTRisNotReturnButSame, rt); } 495 // Conditional jumps/branches via CTR. 496 inline void Assembler::beqctr( ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctr( bcondCRbiIs1, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); } 497 inline void Assembler::beqctrl(ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctrl(bcondCRbiIs1, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); } 498 inline void Assembler::bnectr( ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctr( bcondCRbiIs0, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); } 499 inline void Assembler::bnectrl(ConditionRegister crx, relocInfo::relocType rt) { Assembler::bcctrl(bcondCRbiIs0, bi0(crx, equal), bhintbhBCCTRisNotReturnButSame, rt); } 500 501 // condition register logic instructions 502 inline void Assembler::crand( int d, int s1, int s2) { emit_int32(CRAND_OPCODE | bt(d) | ba(s1) | bb(s2)); } 503 inline void Assembler::crnand(int d, int s1, int s2) { emit_int32(CRNAND_OPCODE | bt(d) | ba(s1) | bb(s2)); } 504 inline void Assembler::cror( int d, int s1, int s2) { emit_int32(CROR_OPCODE | bt(d) | ba(s1) | bb(s2)); } 505 inline void Assembler::crxor( int d, int s1, int s2) { emit_int32(CRXOR_OPCODE | bt(d) | ba(s1) | bb(s2)); } 506 inline void Assembler::crnor( int d, int s1, int s2) { emit_int32(CRNOR_OPCODE | bt(d) | ba(s1) | bb(s2)); } 507 inline void Assembler::creqv( int d, int s1, int s2) { emit_int32(CREQV_OPCODE | bt(d) | ba(s1) | bb(s2)); } 508 inline void Assembler::crandc(int d, int s1, int s2) { emit_int32(CRANDC_OPCODE | bt(d) | ba(s1) | bb(s2)); } 509 inline void Assembler::crorc( int d, int s1, int s2) { emit_int32(CRORC_OPCODE | bt(d) | ba(s1) | bb(s2)); } 510 511 // More convenient version. 512 inline void Assembler::crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { 513 int dst_bit = condition_register_bit(crdst, cdst), 514 src_bit = condition_register_bit(crsrc, csrc); 515 crand(dst_bit, src_bit, dst_bit); 516 } 517 inline void Assembler::crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { 518 int dst_bit = condition_register_bit(crdst, cdst), 519 src_bit = condition_register_bit(crsrc, csrc); 520 crnand(dst_bit, src_bit, dst_bit); 521 } 522 inline void Assembler::cror( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { 523 int dst_bit = condition_register_bit(crdst, cdst), 524 src_bit = condition_register_bit(crsrc, csrc); 525 cror(dst_bit, src_bit, dst_bit); 526 } 527 inline void Assembler::crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { 528 int dst_bit = condition_register_bit(crdst, cdst), 529 src_bit = condition_register_bit(crsrc, csrc); 530 crxor(dst_bit, src_bit, dst_bit); 531 } 532 inline void Assembler::crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { 533 int dst_bit = condition_register_bit(crdst, cdst), 534 src_bit = condition_register_bit(crsrc, csrc); 535 crnor(dst_bit, src_bit, dst_bit); 536 } 537 inline void Assembler::creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { 538 int dst_bit = condition_register_bit(crdst, cdst), 539 src_bit = condition_register_bit(crsrc, csrc); 540 creqv(dst_bit, src_bit, dst_bit); 541 } 542 inline void Assembler::crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { 543 int dst_bit = condition_register_bit(crdst, cdst), 544 src_bit = condition_register_bit(crsrc, csrc); 545 crandc(dst_bit, src_bit, dst_bit); 546 } 547 inline void Assembler::crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc) { 548 int dst_bit = condition_register_bit(crdst, cdst), 549 src_bit = condition_register_bit(crsrc, csrc); 550 crorc(dst_bit, src_bit, dst_bit); 551 } 552 553 // Conditional move (>= Power7) 554 inline void Assembler::isel(Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b) { 555 if (b == noreg) { 556 b = d; // Can be omitted if old value should be kept in "else" case. 557 } 558 Register first = a; 559 Register second = b; 560 if (inv) { 561 first = b; 562 second = a; // exchange 563 } 564 assert(first != R0, "r0 not allowed"); 565 isel(d, first, second, bi0(cr, cc)); 566 } 567 inline void Assembler::isel_0(Register d, ConditionRegister cr, Condition cc, Register b) { 568 if (b == noreg) { 569 b = d; // Can be omitted if old value should be kept in "else" case. 570 } 571 isel(d, R0, b, bi0(cr, cc)); 572 } 573 574 // PPC 2, section 3.2.1 Instruction Cache Instructions 575 inline void Assembler::icbi( Register s1, Register s2) { emit_int32( ICBI_OPCODE | ra0mem(s1) | rb(s2) ); } 576 // PPC 2, section 3.2.2 Data Cache Instructions 577 //inline void Assembler::dcba( Register s1, Register s2) { emit_int32( DCBA_OPCODE | ra0mem(s1) | rb(s2) ); } 578 inline void Assembler::dcbz( Register s1, Register s2) { emit_int32( DCBZ_OPCODE | ra0mem(s1) | rb(s2) ); } 579 inline void Assembler::dcbst( Register s1, Register s2) { emit_int32( DCBST_OPCODE | ra0mem(s1) | rb(s2) ); } 580 inline void Assembler::dcbf( Register s1, Register s2) { emit_int32( DCBF_OPCODE | ra0mem(s1) | rb(s2) ); } 581 // dcache read hint 582 inline void Assembler::dcbt( Register s1, Register s2) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) ); } 583 inline void Assembler::dcbtct( Register s1, Register s2, int ct) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) | thct(ct)); } 584 inline void Assembler::dcbtds( Register s1, Register s2, int ds) { emit_int32( DCBT_OPCODE | ra0mem(s1) | rb(s2) | thds(ds)); } 585 // dcache write hint 586 inline void Assembler::dcbtst( Register s1, Register s2) { emit_int32( DCBTST_OPCODE | ra0mem(s1) | rb(s2) ); } 587 inline void Assembler::dcbtstct(Register s1, Register s2, int ct) { emit_int32( DCBTST_OPCODE | ra0mem(s1) | rb(s2) | thct(ct)); } 588 589 // machine barrier instructions: 590 inline void Assembler::sync(int a) { emit_int32( SYNC_OPCODE | l910(a)); } 591 inline void Assembler::sync() { Assembler::sync(0); } 592 inline void Assembler::lwsync() { Assembler::sync(1); } 593 inline void Assembler::ptesync() { Assembler::sync(2); } 594 inline void Assembler::eieio() { emit_int32( EIEIO_OPCODE); } 595 inline void Assembler::isync() { emit_int32( ISYNC_OPCODE); } 596 inline void Assembler::elemental_membar(int e) { assert(0 < e && e < 16, "invalid encoding"); emit_int32( SYNC_OPCODE | e1215(e)); } 597 598 // Wait instructions for polling. 599 inline void Assembler::wait() { emit_int32( WAIT_OPCODE); } 600 inline void Assembler::waitrsv() { emit_int32( WAIT_OPCODE | 1<<(31-10)); } // WC=0b01 >=Power7 601 602 // atomics 603 // Use ra0mem to disallow R0 as base. 604 inline void Assembler::lbarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LBARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); } 605 inline void Assembler::lharx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LHARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); } 606 inline void Assembler::lwarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LWARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); } 607 inline void Assembler::ldarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LDARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); } 608 inline void Assembler::lqarx_unchecked(Register d, Register a, Register b, int eh1) { emit_int32( LQARX_OPCODE | rt(d) | ra0mem(a) | rb(b) | eh(eh1)); } 609 inline bool Assembler::lxarx_hint_exclusive_access() { return VM_Version::has_lxarxeh(); } 610 inline void Assembler::lbarx( Register d, Register a, Register b, bool hint_exclusive_access) { lbarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 611 inline void Assembler::lharx( Register d, Register a, Register b, bool hint_exclusive_access) { lharx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 612 inline void Assembler::lwarx( Register d, Register a, Register b, bool hint_exclusive_access) { lwarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 613 inline void Assembler::ldarx( Register d, Register a, Register b, bool hint_exclusive_access) { ldarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 614 inline void Assembler::lqarx( Register d, Register a, Register b, bool hint_exclusive_access) { lqarx_unchecked(d, a, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 615 inline void Assembler::stbcx_(Register s, Register a, Register b) { emit_int32( STBCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); } 616 inline void Assembler::sthcx_(Register s, Register a, Register b) { emit_int32( STHCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); } 617 inline void Assembler::stwcx_(Register s, Register a, Register b) { emit_int32( STWCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); } 618 inline void Assembler::stdcx_(Register s, Register a, Register b) { emit_int32( STDCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); } 619 inline void Assembler::stqcx_(Register s, Register a, Register b) { emit_int32( STQCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); } 620 621 // Instructions for adjusting thread priority 622 // for simultaneous multithreading (SMT) on POWER5. 623 inline void Assembler::smt_prio_very_low() { Assembler::or_unchecked(R31, R31, R31); } 624 inline void Assembler::smt_prio_low() { Assembler::or_unchecked(R1, R1, R1); } 625 inline void Assembler::smt_prio_medium_low() { Assembler::or_unchecked(R6, R6, R6); } 626 inline void Assembler::smt_prio_medium() { Assembler::or_unchecked(R2, R2, R2); } 627 inline void Assembler::smt_prio_medium_high() { Assembler::or_unchecked(R5, R5, R5); } 628 inline void Assembler::smt_prio_high() { Assembler::or_unchecked(R3, R3, R3); } 629 // >= Power7 630 inline void Assembler::smt_yield() { Assembler::or_unchecked(R27, R27, R27); } 631 inline void Assembler::smt_mdoio() { Assembler::or_unchecked(R29, R29, R29); } 632 inline void Assembler::smt_mdoom() { Assembler::or_unchecked(R30, R30, R30); } 633 // >= Power8 634 inline void Assembler::smt_miso() { Assembler::or_unchecked(R26, R26, R26); } 635 636 inline void Assembler::twi_0(Register a) { twi_unchecked(0, a, 0);} 637 638 // trap instructions 639 inline void Assembler::tdi_unchecked(int tobits, Register a, int si16){ emit_int32( TDI_OPCODE | to(tobits) | ra(a) | si(si16)); } 640 inline void Assembler::twi_unchecked(int tobits, Register a, int si16){ emit_int32( TWI_OPCODE | to(tobits) | ra(a) | si(si16)); } 641 inline void Assembler::tdi(int tobits, Register a, int si16) { assert(UseSIGTRAP, "precondition"); tdi_unchecked(tobits, a, si16); } 642 inline void Assembler::twi(int tobits, Register a, int si16) { assert(UseSIGTRAP, "precondition"); twi_unchecked(tobits, a, si16); } 643 inline void Assembler::td( int tobits, Register a, Register b) { assert(UseSIGTRAP, "precondition"); emit_int32( TD_OPCODE | to(tobits) | ra(a) | rb(b)); } 644 inline void Assembler::tw( int tobits, Register a, Register b) { assert(UseSIGTRAP, "precondition"); emit_int32( TW_OPCODE | to(tobits) | ra(a) | rb(b)); } 645 646 // FLOATING POINT instructions ppc. 647 // PPC 1, section 4.6.2 Floating-Point Load Instructions 648 // Use ra0mem instead of ra in some instructions below. 649 inline void Assembler::lfs( FloatRegister d, int si16, Register a) { emit_int32( LFS_OPCODE | frt(d) | ra0mem(a) | simm(si16,16)); } 650 inline void Assembler::lfsu(FloatRegister d, int si16, Register a) { emit_int32( LFSU_OPCODE | frt(d) | ra(a) | simm(si16,16)); } 651 inline void Assembler::lfsx(FloatRegister d, Register a, Register b) { emit_int32( LFSX_OPCODE | frt(d) | ra0mem(a) | rb(b)); } 652 inline void Assembler::lfd( FloatRegister d, int si16, Register a) { emit_int32( LFD_OPCODE | frt(d) | ra0mem(a) | simm(si16,16)); } 653 inline void Assembler::lfdu(FloatRegister d, int si16, Register a) { emit_int32( LFDU_OPCODE | frt(d) | ra(a) | simm(si16,16)); } 654 inline void Assembler::lfdx(FloatRegister d, Register a, Register b) { emit_int32( LFDX_OPCODE | frt(d) | ra0mem(a) | rb(b)); } 655 656 // PPC 1, section 4.6.3 Floating-Point Store Instructions 657 // Use ra0mem instead of ra in some instructions below. 658 inline void Assembler::stfs( FloatRegister s, int si16, Register a) { emit_int32( STFS_OPCODE | frs(s) | ra0mem(a) | simm(si16,16)); } 659 inline void Assembler::stfsu(FloatRegister s, int si16, Register a) { emit_int32( STFSU_OPCODE | frs(s) | ra(a) | simm(si16,16)); } 660 inline void Assembler::stfsx(FloatRegister s, Register a, Register b){ emit_int32( STFSX_OPCODE | frs(s) | ra0mem(a) | rb(b)); } 661 inline void Assembler::stfd( FloatRegister s, int si16, Register a) { emit_int32( STFD_OPCODE | frs(s) | ra0mem(a) | simm(si16,16)); } 662 inline void Assembler::stfdu(FloatRegister s, int si16, Register a) { emit_int32( STFDU_OPCODE | frs(s) | ra(a) | simm(si16,16)); } 663 inline void Assembler::stfdx(FloatRegister s, Register a, Register b){ emit_int32( STFDX_OPCODE | frs(s) | ra0mem(a) | rb(b)); } 664 665 // PPC 1, section 4.6.4 Floating-Point Move Instructions 666 inline void Assembler::fmr( FloatRegister d, FloatRegister b) { emit_int32( FMR_OPCODE | frt(d) | frb(b) | rc(0)); } 667 inline void Assembler::fmr_(FloatRegister d, FloatRegister b) { emit_int32( FMR_OPCODE | frt(d) | frb(b) | rc(1)); } 668 669 // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx" 670 // on Power7. Do not use. 671 //inline void Assembler::mffgpr( FloatRegister d, Register b) { emit_int32( MFFGPR_OPCODE | frt(d) | rb(b) | rc(0)); } 672 //inline void Assembler::mftgpr( Register d, FloatRegister b) { emit_int32( MFTGPR_OPCODE | rt(d) | frb(b) | rc(0)); } 673 // add cmpb and popcntb to detect ppc power version. 674 inline void Assembler::cmpb( Register a, Register s, Register b) { guarantee(VM_Version::has_cmpb(), "opcode not supported on this hardware"); 675 emit_int32( CMPB_OPCODE | rta(a) | rs(s) | rb(b) | rc(0)); } 676 inline void Assembler::popcntb(Register a, Register s) { guarantee(VM_Version::has_popcntb(), "opcode not supported on this hardware"); 677 emit_int32( POPCNTB_OPCODE | rta(a) | rs(s)); }; 678 inline void Assembler::popcntw(Register a, Register s) { guarantee(VM_Version::has_popcntw(), "opcode not supported on this hardware"); 679 emit_int32( POPCNTW_OPCODE | rta(a) | rs(s)); }; 680 inline void Assembler::popcntd(Register a, Register s) { emit_int32( POPCNTD_OPCODE | rta(a) | rs(s)); }; 681 682 inline void Assembler::fneg( FloatRegister d, FloatRegister b) { emit_int32( FNEG_OPCODE | frt(d) | frb(b) | rc(0)); } 683 inline void Assembler::fneg_( FloatRegister d, FloatRegister b) { emit_int32( FNEG_OPCODE | frt(d) | frb(b) | rc(1)); } 684 inline void Assembler::fabs( FloatRegister d, FloatRegister b) { emit_int32( FABS_OPCODE | frt(d) | frb(b) | rc(0)); } 685 inline void Assembler::fabs_( FloatRegister d, FloatRegister b) { emit_int32( FABS_OPCODE | frt(d) | frb(b) | rc(1)); } 686 inline void Assembler::fnabs( FloatRegister d, FloatRegister b) { emit_int32( FNABS_OPCODE | frt(d) | frb(b) | rc(0)); } 687 inline void Assembler::fnabs_(FloatRegister d, FloatRegister b) { emit_int32( FNABS_OPCODE | frt(d) | frb(b) | rc(1)); } 688 689 // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions 690 inline void Assembler::fadd( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADD_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } 691 inline void Assembler::fadd_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADD_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } 692 inline void Assembler::fadds( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADDS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } 693 inline void Assembler::fadds_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FADDS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } 694 inline void Assembler::fsub( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUB_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } 695 inline void Assembler::fsub_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUB_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } 696 inline void Assembler::fsubs( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUBS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } 697 inline void Assembler::fsubs_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FSUBS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } 698 inline void Assembler::fmul( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMUL_OPCODE | frt(d) | fra(a) | frc(c) | rc(0)); } 699 inline void Assembler::fmul_( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMUL_OPCODE | frt(d) | fra(a) | frc(c) | rc(1)); } 700 inline void Assembler::fmuls( FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMULS_OPCODE | frt(d) | fra(a) | frc(c) | rc(0)); } 701 inline void Assembler::fmuls_(FloatRegister d, FloatRegister a, FloatRegister c) { emit_int32( FMULS_OPCODE | frt(d) | fra(a) | frc(c) | rc(1)); } 702 inline void Assembler::fdiv( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIV_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } 703 inline void Assembler::fdiv_( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIV_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } 704 inline void Assembler::fdivs( FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIVS_OPCODE | frt(d) | fra(a) | frb(b) | rc(0)); } 705 inline void Assembler::fdivs_(FloatRegister d, FloatRegister a, FloatRegister b) { emit_int32( FDIVS_OPCODE | frt(d) | fra(a) | frb(b) | rc(1)); } 706 707 // Fused multiply-accumulate instructions. 708 // WARNING: Use only when rounding between the 2 parts is not desired. 709 // Some floating point tck tests will fail if used incorrectly. 710 inline void Assembler::fmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMADD_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); } 711 inline void Assembler::fmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMADD_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); } 712 inline void Assembler::fmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMADDS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); } 713 inline void Assembler::fmadds_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMADDS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); } 714 inline void Assembler::fmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMSUB_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); } 715 inline void Assembler::fmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMSUB_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); } 716 inline void Assembler::fmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMSUBS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); } 717 inline void Assembler::fmsubs_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FMSUBS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); } 718 inline void Assembler::fnmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMADD_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); } 719 inline void Assembler::fnmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMADD_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); } 720 inline void Assembler::fnmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMADDS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); } 721 inline void Assembler::fnmadds_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMADDS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); } 722 inline void Assembler::fnmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMSUB_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); } 723 inline void Assembler::fnmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMSUB_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); } 724 inline void Assembler::fnmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMSUBS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(0)); } 725 inline void Assembler::fnmsubs_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b) { emit_int32( FNMSUBS_OPCODE | frt(d) | fra(a) | frb(b) | frc(c) | rc(1)); } 726 727 // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions 728 inline void Assembler::frsp( FloatRegister d, FloatRegister b) { emit_int32( FRSP_OPCODE | frt(d) | frb(b) | rc(0)); } 729 inline void Assembler::fctid( FloatRegister d, FloatRegister b) { emit_int32( FCTID_OPCODE | frt(d) | frb(b) | rc(0)); } 730 inline void Assembler::fctidz(FloatRegister d, FloatRegister b) { emit_int32( FCTIDZ_OPCODE | frt(d) | frb(b) | rc(0)); } 731 inline void Assembler::fctiw( FloatRegister d, FloatRegister b) { emit_int32( FCTIW_OPCODE | frt(d) | frb(b) | rc(0)); } 732 inline void Assembler::fctiwz(FloatRegister d, FloatRegister b) { emit_int32( FCTIWZ_OPCODE | frt(d) | frb(b) | rc(0)); } 733 inline void Assembler::fcfid( FloatRegister d, FloatRegister b) { emit_int32( FCFID_OPCODE | frt(d) | frb(b) | rc(0)); } 734 inline void Assembler::fcfids(FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fcfids(), "opcode not supported on this hardware"); 735 emit_int32( FCFIDS_OPCODE | frt(d) | frb(b) | rc(0)); } 736 737 // PPC 1, section 4.6.7 Floating-Point Compare Instructions 738 inline void Assembler::fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b) { emit_int32( FCMPU_OPCODE | bf(crx) | fra(a) | frb(b)); } 739 740 // PPC 1, section 5.2.1 Floating-Point Arithmetic Instructions 741 inline void Assembler::fsqrt( FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fsqrt(), "opcode not supported on this hardware"); 742 emit_int32( FSQRT_OPCODE | frt(d) | frb(b) | rc(0)); } 743 inline void Assembler::fsqrts(FloatRegister d, FloatRegister b) { guarantee(VM_Version::has_fsqrts(), "opcode not supported on this hardware"); 744 emit_int32( FSQRTS_OPCODE | frt(d) | frb(b) | rc(0)); } 745 746 // Vector instructions for >= Power6. 747 inline void Assembler::lvebx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEBX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 748 inline void Assembler::lvehx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEHX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 749 inline void Assembler::lvewx( VectorRegister d, Register s1, Register s2) { emit_int32( LVEWX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 750 inline void Assembler::lvx( VectorRegister d, Register s1, Register s2) { emit_int32( LVX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 751 inline void Assembler::lvxl( VectorRegister d, Register s1, Register s2) { emit_int32( LVXL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 752 inline void Assembler::stvebx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEBX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 753 inline void Assembler::stvehx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEHX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 754 inline void Assembler::stvewx(VectorRegister d, Register s1, Register s2) { emit_int32( STVEWX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 755 inline void Assembler::stvx( VectorRegister d, Register s1, Register s2) { emit_int32( STVX_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 756 inline void Assembler::stvxl( VectorRegister d, Register s1, Register s2) { emit_int32( STVXL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 757 inline void Assembler::lvsl( VectorRegister d, Register s1, Register s2) { emit_int32( LVSL_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 758 inline void Assembler::lvsr( VectorRegister d, Register s1, Register s2) { emit_int32( LVSR_OPCODE | vrt(d) | ra0mem(s1) | rb(s2)); } 759 760 // Vector-Scalar (VSX) instructions. 761 inline void Assembler::lxvd2x( VectorSRegister d, Register s1) { emit_int32( LXVD2X_OPCODE | vsrt(d) | ra(0) | rb(s1)); } 762 inline void Assembler::lxvd2x( VectorSRegister d, Register s1, Register s2) { emit_int32( LXVD2X_OPCODE | vsrt(d) | ra0mem(s1) | rb(s2)); } 763 inline void Assembler::stxvd2x( VectorSRegister d, Register s1) { emit_int32( STXVD2X_OPCODE | vsrt(d) | ra(0) | rb(s1)); } 764 inline void Assembler::stxvd2x( VectorSRegister d, Register s1, Register s2) { emit_int32( STXVD2X_OPCODE | vsrt(d) | ra0mem(s1) | rb(s2)); } 765 inline void Assembler::mtvrd( VectorRegister d, Register a) { emit_int32( MTVSRD_OPCODE | vsrt(d->to_vsr()) | ra(a)); } 766 inline void Assembler::mfvrd( Register a, VectorRegister d) { emit_int32( MFVSRD_OPCODE | vsrt(d->to_vsr()) | ra(a)); } 767 inline void Assembler::mtvrwz( VectorRegister d, Register a) { emit_int32( MTVSRWZ_OPCODE | vsrt(d->to_vsr()) | ra(a)); } 768 inline void Assembler::mfvrwz( Register a, VectorRegister d) { emit_int32( MFVSRWZ_OPCODE | vsrt(d->to_vsr()) | ra(a)); } 769 inline void Assembler::xxpermdi(VectorSRegister d, VectorSRegister a, VectorSRegister b, int dm) { emit_int32( XXPERMDI_OPCODE | vsrt(d) | vsra(a) | vsrb(b) | vsdm(dm)); } 770 inline void Assembler::xxmrghw( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXMRGHW_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); } 771 inline void Assembler::xxmrglw( VectorSRegister d, VectorSRegister a, VectorSRegister b) { emit_int32( XXMRGHW_OPCODE | vsrt(d) | vsra(a) | vsrb(b)); } 772 773 // VSX Extended Mnemonics 774 inline void Assembler::xxspltd( VectorSRegister d, VectorSRegister a, int x) { xxpermdi(d, a, a, x ? 3 : 0); } 775 inline void Assembler::xxmrghd( VectorSRegister d, VectorSRegister a, VectorSRegister b) { xxpermdi(d, a, b, 0); } 776 inline void Assembler::xxmrgld( VectorSRegister d, VectorSRegister a, VectorSRegister b) { xxpermdi(d, a, b, 3); } 777 inline void Assembler::xxswapd( VectorSRegister d, VectorSRegister a) { xxpermdi(d, a, a, 2); } 778 779 // Vector-Scalar (VSX) instructions. 780 inline void Assembler::mtfprd( FloatRegister d, Register a) { emit_int32( MTVSRD_OPCODE | frt(d) | ra(a)); } 781 inline void Assembler::mtfprwa( FloatRegister d, Register a) { emit_int32( MTVSRWA_OPCODE | frt(d) | ra(a)); } 782 inline void Assembler::mffprd( Register a, FloatRegister d) { emit_int32( MFVSRD_OPCODE | frt(d) | ra(a)); } 783 784 inline void Assembler::vpkpx( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKPX_OPCODE | vrt(d) | vra(a) | vrb(b)); } 785 inline void Assembler::vpkshss( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSHSS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 786 inline void Assembler::vpkswss( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSWSS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 787 inline void Assembler::vpkshus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSHUS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 788 inline void Assembler::vpkswus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKSWUS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 789 inline void Assembler::vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUHUM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 790 inline void Assembler::vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUWUM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 791 inline void Assembler::vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUHUS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 792 inline void Assembler::vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPKUWUS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 793 inline void Assembler::vupkhpx( VectorRegister d, VectorRegister b) { emit_int32( VUPKHPX_OPCODE | vrt(d) | vrb(b)); } 794 inline void Assembler::vupkhsb( VectorRegister d, VectorRegister b) { emit_int32( VUPKHSB_OPCODE | vrt(d) | vrb(b)); } 795 inline void Assembler::vupkhsh( VectorRegister d, VectorRegister b) { emit_int32( VUPKHSH_OPCODE | vrt(d) | vrb(b)); } 796 inline void Assembler::vupklpx( VectorRegister d, VectorRegister b) { emit_int32( VUPKLPX_OPCODE | vrt(d) | vrb(b)); } 797 inline void Assembler::vupklsb( VectorRegister d, VectorRegister b) { emit_int32( VUPKLSB_OPCODE | vrt(d) | vrb(b)); } 798 inline void Assembler::vupklsh( VectorRegister d, VectorRegister b) { emit_int32( VUPKLSH_OPCODE | vrt(d) | vrb(b)); } 799 inline void Assembler::vmrghb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 800 inline void Assembler::vmrghw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 801 inline void Assembler::vmrghh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGHH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 802 inline void Assembler::vmrglb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 803 inline void Assembler::vmrglw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 804 inline void Assembler::vmrglh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMRGLH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 805 inline void Assembler::vsplt( VectorRegister d, int ui4, VectorRegister b) { emit_int32( VSPLT_OPCODE | vrt(d) | vsplt_uim(uimm(ui4,4)) | vrb(b)); } 806 inline void Assembler::vsplth( VectorRegister d, int ui3, VectorRegister b) { emit_int32( VSPLTH_OPCODE | vrt(d) | vsplt_uim(uimm(ui3,3)) | vrb(b)); } 807 inline void Assembler::vspltw( VectorRegister d, int ui2, VectorRegister b) { emit_int32( VSPLTW_OPCODE | vrt(d) | vsplt_uim(uimm(ui2,2)) | vrb(b)); } 808 inline void Assembler::vspltisb(VectorRegister d, int si5) { emit_int32( VSPLTISB_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); } 809 inline void Assembler::vspltish(VectorRegister d, int si5) { emit_int32( VSPLTISH_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); } 810 inline void Assembler::vspltisw(VectorRegister d, int si5) { emit_int32( VSPLTISW_OPCODE| vrt(d) | vsplti_sim(simm(si5,5))); } 811 inline void Assembler::vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c){ emit_int32( VPERM_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); } 812 inline void Assembler::vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c){ emit_int32( VSEL_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); } 813 inline void Assembler::vsl( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSL_OPCODE | vrt(d) | vra(a) | vrb(b)); } 814 inline void Assembler::vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int ui4) { emit_int32( VSLDOI_OPCODE| vrt(d) | vra(a) | vrb(b) | vsldoi_shb(uimm(ui4,4))); } 815 inline void Assembler::vslo( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLO_OPCODE | vrt(d) | vra(a) | vrb(b)); } 816 inline void Assembler::vsr( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSR_OPCODE | vrt(d) | vra(a) | vrb(b)); } 817 inline void Assembler::vsro( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRO_OPCODE | vrt(d) | vra(a) | vrb(b)); } 818 inline void Assembler::vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDCUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 819 inline void Assembler::vaddshs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 820 inline void Assembler::vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 821 inline void Assembler::vaddsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 822 inline void Assembler::vaddubm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUBM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 823 inline void Assembler::vadduwm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUWM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 824 inline void Assembler::vadduhm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUHM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 825 inline void Assembler::vaddudm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUDM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 826 inline void Assembler::vaddubs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 827 inline void Assembler::vadduws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 828 inline void Assembler::vadduhs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VADDUHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 829 inline void Assembler::vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBCUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 830 inline void Assembler::vsubshs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 831 inline void Assembler::vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 832 inline void Assembler::vsubsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 833 inline void Assembler::vsububm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUBM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 834 inline void Assembler::vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUWM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 835 inline void Assembler::vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUHM_OPCODE | vrt(d) | vra(a) | vrb(b)); } 836 inline void Assembler::vsububs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 837 inline void Assembler::vsubuws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 838 inline void Assembler::vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUBUHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 839 inline void Assembler::vmulesb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULESB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 840 inline void Assembler::vmuleub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULEUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 841 inline void Assembler::vmulesh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULESH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 842 inline void Assembler::vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULEUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 843 inline void Assembler::vmulosb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOSB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 844 inline void Assembler::vmuloub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 845 inline void Assembler::vmulosh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOSH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 846 inline void Assembler::vmulouh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMULOUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 847 inline void Assembler::vmhaddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMHADDSHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } 848 inline void Assembler::vmhraddshs(VectorRegister d,VectorRegister a,VectorRegister b, VectorRegister c) { emit_int32( VMHRADDSHS_OPCODE| vrt(d) | vra(a) | vrb(b)| vrc(c)); } 849 inline void Assembler::vmladduhm(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMLADDUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } 850 inline void Assembler::vmsubuhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUBUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } 851 inline void Assembler::vmsummbm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMMBM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } 852 inline void Assembler::vmsumshm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMSHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } 853 inline void Assembler::vmsumshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMSHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } 854 inline void Assembler::vmsumuhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMUHM_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } 855 inline void Assembler::vmsumuhs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VMSUMUHS_OPCODE | vrt(d) | vra(a) | vrb(b)| vrc(c)); } 856 inline void Assembler::vsumsws( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUMSWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 857 inline void Assembler::vsum2sws(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM2SWS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 858 inline void Assembler::vsum4sbs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4SBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 859 inline void Assembler::vsum4ubs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4UBS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 860 inline void Assembler::vsum4shs(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSUM4SHS_OPCODE | vrt(d) | vra(a) | vrb(b)); } 861 inline void Assembler::vavgsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 862 inline void Assembler::vavgsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 863 inline void Assembler::vavgsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGSH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 864 inline void Assembler::vavgub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 865 inline void Assembler::vavguw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 866 inline void Assembler::vavguh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VAVGUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 867 inline void Assembler::vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 868 inline void Assembler::vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 869 inline void Assembler::vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXSH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 870 inline void Assembler::vmaxub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 871 inline void Assembler::vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 872 inline void Assembler::vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMAXUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 873 inline void Assembler::vminsb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 874 inline void Assembler::vminsw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 875 inline void Assembler::vminsh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINSH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 876 inline void Assembler::vminub( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 877 inline void Assembler::vminuw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 878 inline void Assembler::vminuh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VMINUH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 879 inline void Assembler::vcmpequb(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 880 inline void Assembler::vcmpequh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 881 inline void Assembler::vcmpequw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 882 inline void Assembler::vcmpgtsh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 883 inline void Assembler::vcmpgtsb(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 884 inline void Assembler::vcmpgtsw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 885 inline void Assembler::vcmpgtub(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 886 inline void Assembler::vcmpgtuh(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 887 inline void Assembler::vcmpgtuw(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(0)); } 888 inline void Assembler::vcmpequb_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 889 inline void Assembler::vcmpequh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 890 inline void Assembler::vcmpequw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPEQUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 891 inline void Assembler::vcmpgtsh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 892 inline void Assembler::vcmpgtsb_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 893 inline void Assembler::vcmpgtsw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTSW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 894 inline void Assembler::vcmpgtub_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUB_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 895 inline void Assembler::vcmpgtuh_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUH_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 896 inline void Assembler::vcmpgtuw_(VectorRegister d,VectorRegister a, VectorRegister b) { emit_int32( VCMPGTUW_OPCODE | vrt(d) | vra(a) | vrb(b) | vcmp_rc(1)); } 897 inline void Assembler::vand( VectorRegister d, VectorRegister a, VectorRegister b) { guarantee(VM_Version::has_vand(), "opcode not supported on this hardware"); 898 emit_int32( VAND_OPCODE | vrt(d) | vra(a) | vrb(b)); } 899 inline void Assembler::vandc( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VANDC_OPCODE | vrt(d) | vra(a) | vrb(b)); } 900 inline void Assembler::vnor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNOR_OPCODE | vrt(d) | vra(a) | vrb(b)); } 901 inline void Assembler::vor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VOR_OPCODE | vrt(d) | vra(a) | vrb(b)); } 902 inline void Assembler::vmr( VectorRegister d, VectorRegister a) { emit_int32( VOR_OPCODE | vrt(d) | vra(a) | vrb(a)); } 903 inline void Assembler::vxor( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VXOR_OPCODE | vrt(d) | vra(a) | vrb(b)); } 904 inline void Assembler::vrld( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLD_OPCODE | vrt(d) | vra(a) | vrb(b)); } 905 inline void Assembler::vrlb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 906 inline void Assembler::vrlw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 907 inline void Assembler::vrlh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VRLH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 908 inline void Assembler::vslb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 909 inline void Assembler::vskw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSKW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 910 inline void Assembler::vslh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSLH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 911 inline void Assembler::vsrb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 912 inline void Assembler::vsrw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 913 inline void Assembler::vsrh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 914 inline void Assembler::vsrab( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 915 inline void Assembler::vsraw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 916 inline void Assembler::vsrah( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VSRAH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 917 inline void Assembler::mtvscr( VectorRegister b) { emit_int32( MTVSCR_OPCODE | vrb(b)); } 918 inline void Assembler::mfvscr( VectorRegister d) { emit_int32( MFVSCR_OPCODE | vrt(d)); } 919 920 // AES (introduced with Power 8) 921 inline void Assembler::vcipher( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCIPHER_OPCODE | vrt(d) | vra(a) | vrb(b)); } 922 inline void Assembler::vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VCIPHERLAST_OPCODE | vrt(d) | vra(a) | vrb(b)); } 923 inline void Assembler::vncipher( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNCIPHER_OPCODE | vrt(d) | vra(a) | vrb(b)); } 924 inline void Assembler::vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VNCIPHERLAST_OPCODE | vrt(d) | vra(a) | vrb(b)); } 925 inline void Assembler::vsbox( VectorRegister d, VectorRegister a) { emit_int32( VSBOX_OPCODE | vrt(d) | vra(a) ); } 926 927 // SHA (introduced with Power 8) 928 inline void Assembler::vshasigmad(VectorRegister d, VectorRegister a, bool st, int six) { emit_int32( VSHASIGMAD_OPCODE | vrt(d) | vra(a) | vst(st) | vsix(six)); } 929 inline void Assembler::vshasigmaw(VectorRegister d, VectorRegister a, bool st, int six) { emit_int32( VSHASIGMAW_OPCODE | vrt(d) | vra(a) | vst(st) | vsix(six)); } 930 931 // Vector Binary Polynomial Multiplication (introduced with Power 8) 932 inline void Assembler::vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMB_OPCODE | vrt(d) | vra(a) | vrb(b)); } 933 inline void Assembler::vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMD_OPCODE | vrt(d) | vra(a) | vrb(b)); } 934 inline void Assembler::vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMH_OPCODE | vrt(d) | vra(a) | vrb(b)); } 935 inline void Assembler::vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b) { emit_int32( VPMSUMW_OPCODE | vrt(d) | vra(a) | vrb(b)); } 936 937 // Vector Permute and Xor (introduced with Power 8) 938 inline void Assembler::vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c) { emit_int32( VPMSUMW_OPCODE | vrt(d) | vra(a) | vrb(b) | vrc(c)); } 939 940 // Transactional Memory instructions (introduced with Power 8) 941 inline void Assembler::tbegin_() { emit_int32( TBEGIN_OPCODE | rc(1)); } 942 inline void Assembler::tbeginrot_() { emit_int32( TBEGIN_OPCODE | /*R=1*/ 1u << (31-10) | rc(1)); } 943 inline void Assembler::tend_() { emit_int32( TEND_OPCODE | rc(1)); } 944 inline void Assembler::tendall_() { emit_int32( TEND_OPCODE | /*A=1*/ 1u << (31-6) | rc(1)); } 945 inline void Assembler::tabort_() { emit_int32( TABORT_OPCODE | rc(1)); } 946 inline void Assembler::tabort_(Register a) { assert(a != R0, "r0 not allowed"); emit_int32( TABORT_OPCODE | ra(a) | rc(1)); } 947 inline void Assembler::tabortwc_(int t, Register a, Register b) { emit_int32( TABORTWC_OPCODE | to(t) | ra(a) | rb(b) | rc(1)); } 948 inline void Assembler::tabortwci_(int t, Register a, int si) { emit_int32( TABORTWCI_OPCODE | to(t) | ra(a) | sh1620(si) | rc(1)); } 949 inline void Assembler::tabortdc_(int t, Register a, Register b) { emit_int32( TABORTDC_OPCODE | to(t) | ra(a) | rb(b) | rc(1)); } 950 inline void Assembler::tabortdci_(int t, Register a, int si) { emit_int32( TABORTDCI_OPCODE | to(t) | ra(a) | sh1620(si) | rc(1)); } 951 inline void Assembler::tsuspend_() { emit_int32( TSR_OPCODE | rc(1)); } 952 inline void Assembler::tresume_() { emit_int32( TSR_OPCODE | /*L=1*/ 1u << (31-10) | rc(1)); } 953 inline void Assembler::tcheck(int f) { emit_int32( TCHECK_OPCODE | bf(f)); } 954 955 // ra0 version 956 inline void Assembler::lwzx( Register d, Register s2) { emit_int32( LWZX_OPCODE | rt(d) | rb(s2));} 957 inline void Assembler::lwz( Register d, int si16 ) { emit_int32( LWZ_OPCODE | rt(d) | d1(si16));} 958 inline void Assembler::lwax( Register d, Register s2) { emit_int32( LWAX_OPCODE | rt(d) | rb(s2));} 959 inline void Assembler::lwa( Register d, int si16 ) { emit_int32( LWA_OPCODE | rt(d) | ds(si16));} 960 inline void Assembler::lwbrx(Register d, Register s2) { emit_int32( LWBRX_OPCODE| rt(d) | rb(s2));} 961 inline void Assembler::lhzx( Register d, Register s2) { emit_int32( LHZX_OPCODE | rt(d) | rb(s2));} 962 inline void Assembler::lhz( Register d, int si16 ) { emit_int32( LHZ_OPCODE | rt(d) | d1(si16));} 963 inline void Assembler::lhax( Register d, Register s2) { emit_int32( LHAX_OPCODE | rt(d) | rb(s2));} 964 inline void Assembler::lha( Register d, int si16 ) { emit_int32( LHA_OPCODE | rt(d) | d1(si16));} 965 inline void Assembler::lhbrx(Register d, Register s2) { emit_int32( LHBRX_OPCODE| rt(d) | rb(s2));} 966 inline void Assembler::lbzx( Register d, Register s2) { emit_int32( LBZX_OPCODE | rt(d) | rb(s2));} 967 inline void Assembler::lbz( Register d, int si16 ) { emit_int32( LBZ_OPCODE | rt(d) | d1(si16));} 968 inline void Assembler::ld( Register d, int si16 ) { emit_int32( LD_OPCODE | rt(d) | ds(si16));} 969 inline void Assembler::ldx( Register d, Register s2) { emit_int32( LDX_OPCODE | rt(d) | rb(s2));} 970 inline void Assembler::ldbrx(Register d, Register s2) { emit_int32( LDBRX_OPCODE| rt(d) | rb(s2));} 971 inline void Assembler::stwx( Register d, Register s2) { emit_int32( STWX_OPCODE | rs(d) | rb(s2));} 972 inline void Assembler::stw( Register d, int si16 ) { emit_int32( STW_OPCODE | rs(d) | d1(si16));} 973 inline void Assembler::stwbrx(Register d, Register s2){ emit_int32(STWBRX_OPCODE| rs(d) | rb(s2));} 974 inline void Assembler::sthx( Register d, Register s2) { emit_int32( STHX_OPCODE | rs(d) | rb(s2));} 975 inline void Assembler::sth( Register d, int si16 ) { emit_int32( STH_OPCODE | rs(d) | d1(si16));} 976 inline void Assembler::sthbrx(Register d, Register s2){ emit_int32(STHBRX_OPCODE| rs(d) | rb(s2));} 977 inline void Assembler::stbx( Register d, Register s2) { emit_int32( STBX_OPCODE | rs(d) | rb(s2));} 978 inline void Assembler::stb( Register d, int si16 ) { emit_int32( STB_OPCODE | rs(d) | d1(si16));} 979 inline void Assembler::std( Register d, int si16 ) { emit_int32( STD_OPCODE | rs(d) | ds(si16));} 980 inline void Assembler::stdx( Register d, Register s2) { emit_int32( STDX_OPCODE | rs(d) | rb(s2));} 981 inline void Assembler::stdbrx(Register d, Register s2){ emit_int32(STDBRX_OPCODE| rs(d) | rb(s2));} 982 983 // ra0 version 984 inline void Assembler::icbi( Register s2) { emit_int32( ICBI_OPCODE | rb(s2) ); } 985 //inline void Assembler::dcba( Register s2) { emit_int32( DCBA_OPCODE | rb(s2) ); } 986 inline void Assembler::dcbz( Register s2) { emit_int32( DCBZ_OPCODE | rb(s2) ); } 987 inline void Assembler::dcbst( Register s2) { emit_int32( DCBST_OPCODE | rb(s2) ); } 988 inline void Assembler::dcbf( Register s2) { emit_int32( DCBF_OPCODE | rb(s2) ); } 989 inline void Assembler::dcbt( Register s2) { emit_int32( DCBT_OPCODE | rb(s2) ); } 990 inline void Assembler::dcbtct( Register s2, int ct) { emit_int32( DCBT_OPCODE | rb(s2) | thct(ct)); } 991 inline void Assembler::dcbtds( Register s2, int ds) { emit_int32( DCBT_OPCODE | rb(s2) | thds(ds)); } 992 inline void Assembler::dcbtst( Register s2) { emit_int32( DCBTST_OPCODE | rb(s2) ); } 993 inline void Assembler::dcbtstct(Register s2, int ct) { emit_int32( DCBTST_OPCODE | rb(s2) | thct(ct)); } 994 995 // ra0 version 996 inline void Assembler::lbarx_unchecked(Register d, Register b, int eh1) { emit_int32( LBARX_OPCODE | rt(d) | rb(b) | eh(eh1)); } 997 inline void Assembler::lharx_unchecked(Register d, Register b, int eh1) { emit_int32( LHARX_OPCODE | rt(d) | rb(b) | eh(eh1)); } 998 inline void Assembler::lwarx_unchecked(Register d, Register b, int eh1) { emit_int32( LWARX_OPCODE | rt(d) | rb(b) | eh(eh1)); } 999 inline void Assembler::ldarx_unchecked(Register d, Register b, int eh1) { emit_int32( LDARX_OPCODE | rt(d) | rb(b) | eh(eh1)); } 1000 inline void Assembler::lqarx_unchecked(Register d, Register b, int eh1) { emit_int32( LQARX_OPCODE | rt(d) | rb(b) | eh(eh1)); } 1001 inline void Assembler::lbarx( Register d, Register b, bool hint_exclusive_access){ lbarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 1002 inline void Assembler::lharx( Register d, Register b, bool hint_exclusive_access){ lharx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 1003 inline void Assembler::lwarx( Register d, Register b, bool hint_exclusive_access){ lwarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 1004 inline void Assembler::ldarx( Register d, Register b, bool hint_exclusive_access){ ldarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 1005 inline void Assembler::lqarx( Register d, Register b, bool hint_exclusive_access){ lqarx_unchecked(d, b, (hint_exclusive_access && lxarx_hint_exclusive_access() && UseExtendedLoadAndReserveInstructionsPPC64) ? 1 : 0); } 1006 inline void Assembler::stbcx_(Register s, Register b) { emit_int32( STBCX_OPCODE | rs(s) | rb(b) | rc(1)); } 1007 inline void Assembler::sthcx_(Register s, Register b) { emit_int32( STHCX_OPCODE | rs(s) | rb(b) | rc(1)); } 1008 inline void Assembler::stwcx_(Register s, Register b) { emit_int32( STWCX_OPCODE | rs(s) | rb(b) | rc(1)); } 1009 inline void Assembler::stdcx_(Register s, Register b) { emit_int32( STDCX_OPCODE | rs(s) | rb(b) | rc(1)); } 1010 inline void Assembler::stqcx_(Register s, Register b) { emit_int32( STQCX_OPCODE | rs(s) | rb(b) | rc(1)); } 1011 1012 // ra0 version 1013 inline void Assembler::lfs( FloatRegister d, int si16) { emit_int32( LFS_OPCODE | frt(d) | simm(si16,16)); } 1014 inline void Assembler::lfsx(FloatRegister d, Register b) { emit_int32( LFSX_OPCODE | frt(d) | rb(b)); } 1015 inline void Assembler::lfd( FloatRegister d, int si16) { emit_int32( LFD_OPCODE | frt(d) | simm(si16,16)); } 1016 inline void Assembler::lfdx(FloatRegister d, Register b) { emit_int32( LFDX_OPCODE | frt(d) | rb(b)); } 1017 1018 // ra0 version 1019 inline void Assembler::stfs( FloatRegister s, int si16) { emit_int32( STFS_OPCODE | frs(s) | simm(si16, 16)); } 1020 inline void Assembler::stfsx(FloatRegister s, Register b) { emit_int32( STFSX_OPCODE | frs(s) | rb(b)); } 1021 inline void Assembler::stfd( FloatRegister s, int si16) { emit_int32( STFD_OPCODE | frs(s) | simm(si16, 16)); } 1022 inline void Assembler::stfdx(FloatRegister s, Register b) { emit_int32( STFDX_OPCODE | frs(s) | rb(b)); } 1023 1024 // ra0 version 1025 inline void Assembler::lvebx( VectorRegister d, Register s2) { emit_int32( LVEBX_OPCODE | vrt(d) | rb(s2)); } 1026 inline void Assembler::lvehx( VectorRegister d, Register s2) { emit_int32( LVEHX_OPCODE | vrt(d) | rb(s2)); } 1027 inline void Assembler::lvewx( VectorRegister d, Register s2) { emit_int32( LVEWX_OPCODE | vrt(d) | rb(s2)); } 1028 inline void Assembler::lvx( VectorRegister d, Register s2) { emit_int32( LVX_OPCODE | vrt(d) | rb(s2)); } 1029 inline void Assembler::lvxl( VectorRegister d, Register s2) { emit_int32( LVXL_OPCODE | vrt(d) | rb(s2)); } 1030 inline void Assembler::stvebx(VectorRegister d, Register s2) { emit_int32( STVEBX_OPCODE | vrt(d) | rb(s2)); } 1031 inline void Assembler::stvehx(VectorRegister d, Register s2) { emit_int32( STVEHX_OPCODE | vrt(d) | rb(s2)); } 1032 inline void Assembler::stvewx(VectorRegister d, Register s2) { emit_int32( STVEWX_OPCODE | vrt(d) | rb(s2)); } 1033 inline void Assembler::stvx( VectorRegister d, Register s2) { emit_int32( STVX_OPCODE | vrt(d) | rb(s2)); } 1034 inline void Assembler::stvxl( VectorRegister d, Register s2) { emit_int32( STVXL_OPCODE | vrt(d) | rb(s2)); } 1035 inline void Assembler::lvsl( VectorRegister d, Register s2) { emit_int32( LVSL_OPCODE | vrt(d) | rb(s2)); } 1036 inline void Assembler::lvsr( VectorRegister d, Register s2) { emit_int32( LVSR_OPCODE | vrt(d) | rb(s2)); } 1037 1038 inline void Assembler::load_const(Register d, void* x, Register tmp) { 1039 load_const(d, (long)x, tmp); 1040 } 1041 1042 // Load a 64 bit constant encoded by a `Label'. This works for bound 1043 // labels as well as unbound ones. For unbound labels, the code will 1044 // be patched as soon as the label gets bound. 1045 inline void Assembler::load_const(Register d, Label& L, Register tmp) { 1046 load_const(d, target(L), tmp); 1047 } 1048 1049 // Load a 64 bit constant encoded by an AddressLiteral. patchable. 1050 inline void Assembler::load_const(Register d, AddressLiteral& a, Register tmp) { 1051 // First relocate (we don't change the offset in the RelocationHolder, 1052 // just pass a.rspec()), then delegate to load_const(Register, long). 1053 relocate(a.rspec()); 1054 load_const(d, (long)a.value(), tmp); 1055 } 1056 1057 inline void Assembler::load_const32(Register d, int i) { 1058 lis(d, i >> 16); 1059 ori(d, d, i & 0xFFFF); 1060 } 1061 1062 #endif // CPU_PPC_VM_ASSEMBLER_PPC_INLINE_HPP