1 /* 2 * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2017, SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_HPP 27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_HPP 28 29 #include "asm/assembler.hpp" 30 #include "runtime/rtmLocking.hpp" 31 #include "utilities/macros.hpp" 32 33 // MacroAssembler extends Assembler by a few frequently used macros. 34 35 class ciTypeArray; 36 37 class MacroAssembler: public Assembler { 38 public: 39 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 40 41 // 42 // Optimized instruction emitters 43 // 44 45 inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; } 46 inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); } 47 48 // load d = *[a+si31] 49 // Emits several instructions if the offset is not encodable in one instruction. 50 void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop); 51 void ld_largeoffset (Register d, int si31, Register a, int emit_filler_nop); 52 inline static bool is_ld_largeoffset(address a); 53 inline static int get_ld_largeoffset_offset(address a); 54 55 inline void round_to(Register r, int modulus); 56 57 // Load/store with type given by parameter. 58 void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed); 59 void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes); 60 61 // Move register if destination register and target register are different 62 inline void mr_if_needed(Register rd, Register rs); 63 inline void fmr_if_needed(FloatRegister rd, FloatRegister rs); 64 // This is dedicated for emitting scheduled mach nodes. For better 65 // readability of the ad file I put it here. 66 // Endgroups are not needed if 67 // - the scheduler is off 68 // - the scheduler found that there is a natural group end, in that 69 // case it reduced the size of the instruction used in the test 70 // yielding 'needed'. 71 inline void endgroup_if_needed(bool needed); 72 73 // Memory barriers. 74 inline void membar(int bits); 75 inline void release(); 76 inline void acquire(); 77 inline void fence(); 78 79 // nop padding 80 void align(int modulus, int max = 252, int rem = 0); 81 82 // 83 // Constants, loading constants, TOC support 84 // 85 86 // Address of the global TOC. 87 inline static address global_toc(); 88 // Offset of given address to the global TOC. 89 inline static int offset_to_global_toc(const address addr); 90 91 // Address of TOC of the current method. 92 inline address method_toc(); 93 // Offset of given address to TOC of the current method. 94 inline int offset_to_method_toc(const address addr); 95 96 // Global TOC. 97 void calculate_address_from_global_toc(Register dst, address addr, 98 bool hi16 = true, bool lo16 = true, 99 bool add_relocation = true, bool emit_dummy_addr = false); 100 inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) { 101 calculate_address_from_global_toc(dst, addr, true, false); 102 }; 103 inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) { 104 calculate_address_from_global_toc(dst, addr, false, true); 105 }; 106 107 inline static bool is_calculate_address_from_global_toc_at(address a, address bound); 108 static int patch_calculate_address_from_global_toc_at(address a, address addr, address bound); 109 static address get_address_of_calculate_address_from_global_toc_at(address a, address addr); 110 111 #ifdef _LP64 112 // Patch narrow oop constant. 113 inline static bool is_set_narrow_oop(address a, address bound); 114 static int patch_set_narrow_oop(address a, address bound, narrowOop data); 115 static narrowOop get_narrow_oop(address a, address bound); 116 #endif 117 118 inline static bool is_load_const_at(address a); 119 120 // Emits an oop const to the constant pool, loads the constant, and 121 // sets a relocation info with address current_pc. 122 // Returns true if successful. 123 bool load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size = false); 124 125 static bool is_load_const_from_method_toc_at(address a); 126 static int get_offset_of_load_const_from_method_toc_at(address a); 127 128 // Get the 64 bit constant from a `load_const' sequence. 129 static long get_const(address load_const); 130 131 // Patch the 64 bit constant of a `load_const' sequence. This is a 132 // low level procedure. It neither flushes the instruction cache nor 133 // is it atomic. 134 static void patch_const(address load_const, long x); 135 136 // Metadata in code that we have to keep track of. 137 AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index 138 AddressLiteral constant_metadata_address(Metadata* obj); // find_index 139 // Oops used directly in compiled code are stored in the constant pool, 140 // and loaded from there. 141 // Allocate new entry for oop in constant pool. Generate relocation. 142 AddressLiteral allocate_oop_address(jobject obj); 143 // Find oop obj in constant pool. Return relocation with it's index. 144 AddressLiteral constant_oop_address(jobject obj); 145 146 // Find oop in constant pool and emit instructions to load it. 147 // Uses constant_oop_address. 148 inline void set_oop_constant(jobject obj, Register d); 149 // Same as load_address. 150 inline void set_oop (AddressLiteral obj_addr, Register d); 151 152 // Read runtime constant: Issue load if constant not yet established, 153 // else use real constant. 154 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, 155 Register tmp, 156 int offset); 157 158 // 159 // branch, jump 160 // 161 162 inline void pd_patch_instruction(address branch, address target); 163 NOT_PRODUCT(static void pd_print_patched_instruction(address branch);) 164 165 // Conditional far branch for destinations encodable in 24+2 bits. 166 // Same interface as bc, e.g. no inverse boint-field. 167 enum { 168 bc_far_optimize_not = 0, 169 bc_far_optimize_on_relocate = 1 170 }; 171 // optimize: flag for telling the conditional far branch to optimize 172 // itself when relocated. 173 void bc_far(int boint, int biint, Label& dest, int optimize); 174 void bc_far_optimized(int boint, int biint, Label& dest); // 1 or 2 instructions 175 // Relocation of conditional far branches. 176 static bool is_bc_far_at(address instruction_addr); 177 static address get_dest_of_bc_far_at(address instruction_addr); 178 static void set_dest_of_bc_far_at(address instruction_addr, address dest); 179 private: 180 static bool inline is_bc_far_variant1_at(address instruction_addr); 181 static bool inline is_bc_far_variant2_at(address instruction_addr); 182 static bool inline is_bc_far_variant3_at(address instruction_addr); 183 public: 184 185 // Convenience bc_far versions. 186 inline void blt_far(ConditionRegister crx, Label& L, int optimize); 187 inline void bgt_far(ConditionRegister crx, Label& L, int optimize); 188 inline void beq_far(ConditionRegister crx, Label& L, int optimize); 189 inline void bso_far(ConditionRegister crx, Label& L, int optimize); 190 inline void bge_far(ConditionRegister crx, Label& L, int optimize); 191 inline void ble_far(ConditionRegister crx, Label& L, int optimize); 192 inline void bne_far(ConditionRegister crx, Label& L, int optimize); 193 inline void bns_far(ConditionRegister crx, Label& L, int optimize); 194 195 // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump. 196 private: 197 enum { 198 bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/), 199 bxx64_patchable_size = bxx64_patchable_instruction_count * BytesPerInstWord, 200 bxx64_patchable_ret_addr_offset = bxx64_patchable_size 201 }; 202 void bxx64_patchable(address target, relocInfo::relocType rt, bool link); 203 static bool is_bxx64_patchable_at( address instruction_addr, bool link); 204 // Does the instruction use a pc-relative encoding of the destination? 205 static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link); 206 static bool is_bxx64_patchable_variant1_at( address instruction_addr, bool link); 207 // Load destination relative to global toc. 208 static bool is_bxx64_patchable_variant1b_at( address instruction_addr, bool link); 209 static bool is_bxx64_patchable_variant2_at( address instruction_addr, bool link); 210 static void set_dest_of_bxx64_patchable_at( address instruction_addr, address target, bool link); 211 static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link); 212 213 public: 214 // call 215 enum { 216 bl64_patchable_instruction_count = bxx64_patchable_instruction_count, 217 bl64_patchable_size = bxx64_patchable_size, 218 bl64_patchable_ret_addr_offset = bxx64_patchable_ret_addr_offset 219 }; 220 inline void bl64_patchable(address target, relocInfo::relocType rt) { 221 bxx64_patchable(target, rt, /*link=*/true); 222 } 223 inline static bool is_bl64_patchable_at(address instruction_addr) { 224 return is_bxx64_patchable_at(instruction_addr, /*link=*/true); 225 } 226 inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) { 227 return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true); 228 } 229 inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) { 230 set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true); 231 } 232 inline static address get_dest_of_bl64_patchable_at(address instruction_addr) { 233 return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true); 234 } 235 // jump 236 enum { 237 b64_patchable_instruction_count = bxx64_patchable_instruction_count, 238 b64_patchable_size = bxx64_patchable_size, 239 }; 240 inline void b64_patchable(address target, relocInfo::relocType rt) { 241 bxx64_patchable(target, rt, /*link=*/false); 242 } 243 inline static bool is_b64_patchable_at(address instruction_addr) { 244 return is_bxx64_patchable_at(instruction_addr, /*link=*/false); 245 } 246 inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) { 247 return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false); 248 } 249 inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) { 250 set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false); 251 } 252 inline static address get_dest_of_b64_patchable_at(address instruction_addr) { 253 return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false); 254 } 255 256 // 257 // Support for frame handling 258 // 259 260 // some ABI-related functions 261 void save_nonvolatile_gprs( Register dst_base, int offset); 262 void restore_nonvolatile_gprs(Register src_base, int offset); 263 enum { num_volatile_regs = 11 + 14 }; // GPR + FPR 264 void save_volatile_gprs( Register dst_base, int offset); 265 void restore_volatile_gprs(Register src_base, int offset); 266 void save_LR_CR( Register tmp); // tmp contains LR on return. 267 void restore_LR_CR(Register tmp); 268 269 // Get current PC using bl-next-instruction trick. 270 address get_PC_trash_LR(Register result); 271 272 // Resize current frame either relatively wrt to current SP or absolute. 273 void resize_frame(Register offset, Register tmp); 274 void resize_frame(int offset, Register tmp); 275 void resize_frame_absolute(Register addr, Register tmp1, Register tmp2); 276 277 // Push a frame of size bytes. 278 void push_frame(Register bytes, Register tmp); 279 280 // Push a frame of size `bytes'. No abi space provided. 281 void push_frame(unsigned int bytes, Register tmp); 282 283 // Push a frame of size `bytes' plus abi_reg_args on top. 284 void push_frame_reg_args(unsigned int bytes, Register tmp); 285 286 // Setup up a new C frame with a spill area for non-volatile GPRs and additional 287 // space for local variables 288 void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp); 289 290 // pop current C frame 291 void pop_frame(); 292 293 // 294 // Calls 295 // 296 297 private: 298 address _last_calls_return_pc; 299 300 #if defined(ABI_ELFv2) 301 // Generic version of a call to C function. 302 // Updates and returns _last_calls_return_pc. 303 address branch_to(Register function_entry, bool and_link); 304 #else 305 // Generic version of a call to C function via a function descriptor 306 // with variable support for C calling conventions (TOC, ENV, etc.). 307 // updates and returns _last_calls_return_pc. 308 address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call, 309 bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee); 310 #endif 311 312 public: 313 314 // Get the pc where the last call will return to. returns _last_calls_return_pc. 315 inline address last_calls_return_pc(); 316 317 #if defined(ABI_ELFv2) 318 // Call a C function via a function descriptor and use full C 319 // calling conventions. Updates and returns _last_calls_return_pc. 320 address call_c(Register function_entry); 321 // For tail calls: only branch, don't link, so callee returns to caller of this function. 322 address call_c_and_return_to_caller(Register function_entry); 323 address call_c(address function_entry, relocInfo::relocType rt); 324 #else 325 // Call a C function via a function descriptor and use full C 326 // calling conventions. Updates and returns _last_calls_return_pc. 327 address call_c(Register function_descriptor); 328 // For tail calls: only branch, don't link, so callee returns to caller of this function. 329 address call_c_and_return_to_caller(Register function_descriptor); 330 address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt); 331 address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt, 332 Register toc); 333 #endif 334 335 protected: 336 337 // It is imperative that all calls into the VM are handled via the 338 // call_VM macros. They make sure that the stack linkage is setup 339 // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points 340 // while call_VM_leaf's correspond to LEAF entry points. 341 // 342 // This is the base routine called by the different versions of 343 // call_VM. The interpreter may customize this version by overriding 344 // it for its purposes (e.g., to save/restore additional registers 345 // when doing a VM call). 346 // 347 // If no last_java_sp is specified (noreg) then SP will be used instead. 348 virtual void call_VM_base( 349 // where an oop-result ends up if any; use noreg otherwise 350 Register oop_result, 351 // to set up last_Java_frame in stubs; use noreg otherwise 352 Register last_java_sp, 353 // the entry point 354 address entry_point, 355 // flag which indicates if exception should be checked 356 bool check_exception = true 357 ); 358 359 // Support for VM calls. This is the base routine called by the 360 // different versions of call_VM_leaf. The interpreter may customize 361 // this version by overriding it for its purposes (e.g., to 362 // save/restore additional registers when doing a VM call). 363 void call_VM_leaf_base(address entry_point); 364 365 public: 366 // Call into the VM. 367 // Passes the thread pointer (in R3_ARG1) as a prepended argument. 368 // Makes sure oop return values are visible to the GC. 369 void call_VM(Register oop_result, address entry_point, bool check_exceptions = true); 370 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true); 371 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 372 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true); 373 void call_VM_leaf(address entry_point); 374 void call_VM_leaf(address entry_point, Register arg_1); 375 void call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 376 void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 377 378 // Call a stub function via a function descriptor, but don't save 379 // TOC before call, don't setup TOC and ENV for call, and don't 380 // restore TOC after call. Updates and returns _last_calls_return_pc. 381 inline address call_stub(Register function_entry); 382 inline void call_stub_and_return_to(Register function_entry, Register return_pc); 383 384 // 385 // Java utilities 386 // 387 388 // Read from the polling page, its address is already in a register. 389 inline void load_from_polling_page(Register polling_page_address, int offset = 0); 390 // Check whether instruction is a read access to the polling page 391 // which was emitted by load_from_polling_page(..). 392 static bool is_load_from_polling_page(int instruction, void* ucontext/*may be NULL*/, 393 address* polling_address_ptr = NULL); 394 395 // Check whether instruction is a write access to the memory 396 // serialization page realized by one of the instructions stw, stwu, 397 // stwx, or stwux. 398 static bool is_memory_serialization(int instruction, JavaThread* thread, void* ucontext); 399 400 // Support for NULL-checks 401 // 402 // Generates code that causes a NULL OS exception if the content of reg is NULL. 403 // If the accessed location is M[reg + offset] and the offset is known, provide the 404 // offset. No explicit code generation is needed if the offset is within a certain 405 // range (0 <= offset <= page_size). 406 407 // Stack overflow checking 408 void bang_stack_with_offset(int offset); 409 410 // If instruction is a stack bang of the form ld, stdu, or 411 // stdux, return the banged address. Otherwise, return 0. 412 static address get_stack_bang_address(int instruction, void* ucontext); 413 414 // Check for reserved stack access in method being exited. If the reserved 415 // stack area was accessed, protect it again and throw StackOverflowError. 416 void reserved_stack_check(Register return_pc); 417 418 // Atomics 419 // CmpxchgX sets condition register to cmpX(current, compare). 420 // (flag == ne) => (dest_current_value != compare_value), (!swapped) 421 // (flag == eq) => (dest_current_value == compare_value), ( swapped) 422 static inline bool cmpxchgx_hint_acquire_lock() { return true; } 423 // The stxcx will probably not be succeeded by a releasing store. 424 static inline bool cmpxchgx_hint_release_lock() { return false; } 425 static inline bool cmpxchgx_hint_atomic_update() { return false; } 426 427 // Cmpxchg semantics 428 enum { 429 MemBarNone = 0, 430 MemBarRel = 1, 431 MemBarAcq = 2, 432 MemBarFenceAfter = 4 // use powers of 2 433 }; 434 private: 435 // Helper functions for word/sub-word atomics. 436 void atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value, 437 Register addr_base, Register tmp1, Register tmp2, Register tmp3, 438 bool cmpxchgx_hint, bool is_add, int size); 439 void cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value, 440 Register compare_value, Register exchange_value, 441 Register addr_base, Register tmp1, Register tmp2, 442 Label &retry, Label &failed, bool cmpxchgx_hint, int size); 443 void cmpxchg_generic(ConditionRegister flag, 444 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 445 Register tmp1, Register tmp2, 446 int semantics, bool cmpxchgx_hint, Register int_flag_success, bool contention_hint, bool weak, int size); 447 public: 448 // Temps and addr_base are killed if processor does not support Power 8 instructions. 449 // Result will be sign extended. 450 void getandsetb(Register dest_current_value, Register exchange_value, Register addr_base, 451 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 452 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 1); 453 } 454 // Temps and addr_base are killed if processor does not support Power 8 instructions. 455 // Result will be sign extended. 456 void getandseth(Register dest_current_value, Register exchange_value, Register addr_base, 457 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 458 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 2); 459 } 460 void getandsetw(Register dest_current_value, Register exchange_value, Register addr_base, 461 bool cmpxchgx_hint) { 462 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, noreg, noreg, noreg, cmpxchgx_hint, false, 4); 463 } 464 void getandsetd(Register dest_current_value, Register exchange_value, Register addr_base, 465 bool cmpxchgx_hint); 466 // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed). 467 // Result will be sign extended. 468 void getandaddb(Register dest_current_value, Register inc_value, Register addr_base, 469 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 470 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 1); 471 } 472 // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed). 473 // Result will be sign extended. 474 void getandaddh(Register dest_current_value, Register inc_value, Register addr_base, 475 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 476 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 2); 477 } 478 void getandaddw(Register dest_current_value, Register inc_value, Register addr_base, 479 Register tmp1, bool cmpxchgx_hint) { 480 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, noreg, noreg, cmpxchgx_hint, true, 4); 481 } 482 void getandaddd(Register dest_current_value, Register exchange_value, Register addr_base, 483 Register tmp, bool cmpxchgx_hint); 484 // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions. 485 // compare_value must be at least 32 bit sign extended. Result will be sign extended. 486 void cmpxchgb(ConditionRegister flag, 487 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 488 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false, 489 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 490 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2, 491 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 1); 492 } 493 // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions. 494 // compare_value must be at least 32 bit sign extended. Result will be sign extended. 495 void cmpxchgh(ConditionRegister flag, 496 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 497 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false, 498 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 499 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2, 500 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 2); 501 } 502 void cmpxchgw(ConditionRegister flag, 503 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 504 int semantics, bool cmpxchgx_hint = false, 505 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 506 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, noreg, noreg, 507 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 4); 508 } 509 void cmpxchgd(ConditionRegister flag, 510 Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value, 511 Register addr_base, int semantics, bool cmpxchgx_hint = false, 512 Register int_flag_success = noreg, Label* failed = NULL, bool contention_hint = false, bool weak = false); 513 514 // interface method calling 515 void lookup_interface_method(Register recv_klass, 516 Register intf_klass, 517 RegisterOrConstant itable_index, 518 Register method_result, 519 Register temp_reg, Register temp2_reg, 520 Label& no_such_interface); 521 522 // virtual method calling 523 void lookup_virtual_method(Register recv_klass, 524 RegisterOrConstant vtable_index, 525 Register method_result); 526 527 // Test sub_klass against super_klass, with fast and slow paths. 528 529 // The fast path produces a tri-state answer: yes / no / maybe-slow. 530 // One of the three labels can be NULL, meaning take the fall-through. 531 // If super_check_offset is -1, the value is loaded up from super_klass. 532 // No registers are killed, except temp_reg and temp2_reg. 533 // If super_check_offset is not -1, temp2_reg is not used and can be noreg. 534 void check_klass_subtype_fast_path(Register sub_klass, 535 Register super_klass, 536 Register temp1_reg, 537 Register temp2_reg, 538 Label* L_success, 539 Label* L_failure, 540 Label* L_slow_path = NULL, // default fall through 541 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 542 543 // The rest of the type check; must be wired to a corresponding fast path. 544 // It does not repeat the fast path logic, so don't use it standalone. 545 // The temp_reg can be noreg, if no temps are available. 546 // It can also be sub_klass or super_klass, meaning it's OK to kill that one. 547 // Updates the sub's secondary super cache as necessary. 548 void check_klass_subtype_slow_path(Register sub_klass, 549 Register super_klass, 550 Register temp1_reg, 551 Register temp2_reg, 552 Label* L_success = NULL, 553 Register result_reg = noreg); 554 555 // Simplified, combined version, good for typical uses. 556 // Falls through on failure. 557 void check_klass_subtype(Register sub_klass, 558 Register super_klass, 559 Register temp1_reg, 560 Register temp2_reg, 561 Label& L_success); 562 563 // Method handle support (JSR 292). 564 void check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type); 565 566 RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0); 567 568 // Biased locking support 569 // Upon entry,obj_reg must contain the target object, and mark_reg 570 // must contain the target object's header. 571 // Destroys mark_reg if an attempt is made to bias an anonymously 572 // biased lock. In this case a failure will go either to the slow 573 // case or fall through with the notEqual condition code set with 574 // the expectation that the slow case in the runtime will be called. 575 // In the fall-through case where the CAS-based lock is done, 576 // mark_reg is not destroyed. 577 void biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg, 578 Register temp2_reg, Label& done, Label* slow_case = NULL); 579 // Upon entry, the base register of mark_addr must contain the oop. 580 // Destroys temp_reg. 581 // If allow_delay_slot_filling is set to true, the next instruction 582 // emitted after this one will go in an annulled delay slot if the 583 // biased locking exit case failed. 584 void biased_locking_exit(ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done); 585 586 // allocation (for C1) 587 void eden_allocate( 588 Register obj, // result: pointer to object after successful allocation 589 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 590 int con_size_in_bytes, // object size in bytes if known at compile time 591 Register t1, // temp register 592 Register t2, // temp register 593 Label& slow_case // continuation point if fast allocation fails 594 ); 595 void tlab_allocate( 596 Register obj, // result: pointer to object after successful allocation 597 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 598 int con_size_in_bytes, // object size in bytes if known at compile time 599 Register t1, // temp register 600 Label& slow_case // continuation point if fast allocation fails 601 ); 602 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); 603 void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2); 604 605 enum { trampoline_stub_size = 6 * 4 }; 606 address emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc = noreg); 607 608 void atomic_inc_ptr(Register addr, Register result, int simm16 = 1); 609 void atomic_ori_int(Register addr, Register result, int uimm16); 610 611 #if INCLUDE_RTM_OPT 612 void rtm_counters_update(Register abort_status, Register rtm_counters); 613 void branch_on_random_using_tb(Register tmp, int count, Label& brLabel); 614 void rtm_abort_ratio_calculation(Register rtm_counters_reg, RTMLockingCounters* rtm_counters, 615 Metadata* method_data); 616 void rtm_profiling(Register abort_status_Reg, Register temp_Reg, 617 RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm); 618 void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, 619 Label& retryLabel, Label* checkRetry = NULL); 620 void rtm_retry_lock_on_busy(Register retry_count, Register owner_addr, Label& retryLabel); 621 void rtm_stack_locking(ConditionRegister flag, Register obj, Register mark_word, Register tmp, 622 Register retry_on_abort_count, 623 RTMLockingCounters* stack_rtm_counters, 624 Metadata* method_data, bool profile_rtm, 625 Label& DONE_LABEL, Label& IsInflated); 626 void rtm_inflated_locking(ConditionRegister flag, Register obj, Register mark_word, Register box, 627 Register retry_on_busy_count, Register retry_on_abort_count, 628 RTMLockingCounters* rtm_counters, 629 Metadata* method_data, bool profile_rtm, 630 Label& DONE_LABEL); 631 #endif 632 633 void compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box, 634 Register tmp1, Register tmp2, Register tmp3, 635 bool try_bias = UseBiasedLocking, 636 RTMLockingCounters* rtm_counters = NULL, 637 RTMLockingCounters* stack_rtm_counters = NULL, 638 Metadata* method_data = NULL, 639 bool use_rtm = false, bool profile_rtm = false); 640 641 void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box, 642 Register tmp1, Register tmp2, Register tmp3, 643 bool try_bias = UseBiasedLocking, bool use_rtm = false); 644 645 // Support for serializing memory accesses between threads 646 void serialize_memory(Register thread, Register tmp1, Register tmp2); 647 648 // GC barrier support. 649 void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp); 650 void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj); 651 652 void resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame); 653 654 #if INCLUDE_ALL_GCS 655 // General G1 pre-barrier generator. 656 void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val, 657 Register Rtmp1, Register Rtmp2, bool needs_frame = false); 658 // General G1 post-barrier generator 659 void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, 660 Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL); 661 #endif 662 663 // Support for managing the JavaThread pointer (i.e.; the reference to 664 // thread-local information). 665 666 // Support for last Java frame (but use call_VM instead where possible): 667 // access R16_thread->last_Java_sp. 668 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc); 669 void reset_last_Java_frame(void); 670 void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1); 671 672 // Read vm result from thread: oop_result = R16_thread->result; 673 void get_vm_result (Register oop_result); 674 void get_vm_result_2(Register metadata_result); 675 676 static bool needs_explicit_null_check(intptr_t offset); 677 678 // Trap-instruction-based checks. 679 // Range checks can be distinguished from zero checks as they check 32 bit, 680 // zero checks all 64 bits (tw, td). 681 inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual); 682 static bool is_trap_null_check(int x) { 683 return is_tdi(x, traptoEqual, -1/*any reg*/, 0) || 684 is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0); 685 } 686 687 inline void trap_zombie_not_entrant(); 688 static bool is_trap_zombie_not_entrant(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 1); } 689 690 inline void trap_should_not_reach_here(); 691 static bool is_trap_should_not_reach_here(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 2); } 692 693 inline void trap_ic_miss_check(Register a, Register b); 694 static bool is_trap_ic_miss_check(int x) { 695 return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/); 696 } 697 698 // Implicit or explicit null check, jumps to static address exception_entry. 699 inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry); 700 inline void null_check(Register a, int offset, Label *Lis_null); // implicit only if Lis_null not provided 701 702 // Load heap oop and decompress. Loaded oop may not be null. 703 // Specify tmp to save one cycle. 704 inline void load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1 = noreg, 705 Register tmp = noreg); 706 // Store heap oop and decompress. Decompressed oop may not be null. 707 // Specify tmp register if d should not be changed. 708 inline void store_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1, 709 Register tmp = noreg); 710 711 // Null allowed. 712 inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1 = noreg, Label *is_null = NULL); 713 714 // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong. 715 // src == d allowed. 716 inline Register encode_heap_oop_not_null(Register d, Register src = noreg); 717 inline Register decode_heap_oop_not_null(Register d, Register src = noreg); 718 719 // Null allowed. 720 inline Register encode_heap_oop(Register d, Register src); // Prefer null check in GC barrier! 721 inline void decode_heap_oop(Register d); 722 723 // Load/Store klass oop from klass field. Compress. 724 void load_klass(Register dst, Register src); 725 void store_klass(Register dst_oop, Register klass, Register tmp = R0); 726 void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified. 727 728 void load_mirror_from_const_method(Register mirror, Register const_method); 729 730 static int instr_size_for_decode_klass_not_null(); 731 void decode_klass_not_null(Register dst, Register src = noreg); 732 Register encode_klass_not_null(Register dst, Register src = noreg); 733 734 // SIGTRAP-based range checks for arrays. 735 inline void trap_range_check_l(Register a, Register b); 736 inline void trap_range_check_l(Register a, int si16); 737 static bool is_trap_range_check_l(int x) { 738 return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) || 739 is_twi(x, traptoLessThanUnsigned, -1/*any reg*/) ); 740 } 741 inline void trap_range_check_le(Register a, int si16); 742 static bool is_trap_range_check_le(int x) { 743 return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/); 744 } 745 inline void trap_range_check_g(Register a, int si16); 746 static bool is_trap_range_check_g(int x) { 747 return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/); 748 } 749 inline void trap_range_check_ge(Register a, Register b); 750 inline void trap_range_check_ge(Register a, int si16); 751 static bool is_trap_range_check_ge(int x) { 752 return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) || 753 is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/) ); 754 } 755 static bool is_trap_range_check(int x) { 756 return is_trap_range_check_l(x) || is_trap_range_check_le(x) || 757 is_trap_range_check_g(x) || is_trap_range_check_ge(x); 758 } 759 760 void clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp = R0, int offset = 0); 761 void clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp = R0); 762 void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0, long const_cnt = -1); 763 764 #ifdef COMPILER2 765 // Intrinsics for CompactStrings 766 // Compress char[] to byte[] by compressing 16 bytes at once. 767 void string_compress_16(Register src, Register dst, Register cnt, 768 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, 769 Label& Lfailure); 770 771 // Compress char[] to byte[]. cnt must be positive int. 772 void string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure); 773 774 // Inflate byte[] to char[] by inflating 16 bytes at once. 775 void string_inflate_16(Register src, Register dst, Register cnt, 776 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5); 777 778 // Inflate byte[] to char[]. cnt must be positive int. 779 void string_inflate(Register src, Register dst, Register cnt, Register tmp); 780 781 void string_compare(Register str1, Register str2, Register cnt1, Register cnt2, 782 Register tmp1, Register result, int ae); 783 784 void array_equals(bool is_array_equ, Register ary1, Register ary2, 785 Register limit, Register tmp1, Register result, bool is_byte); 786 787 void string_indexof(Register result, Register haystack, Register haycnt, 788 Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval, 789 Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae); 790 791 void string_indexof_char(Register result, Register haystack, Register haycnt, 792 Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte); 793 794 void has_negatives(Register src, Register cnt, Register result, Register tmp1, Register tmp2); 795 #endif 796 797 // Emitters for BigInteger.multiplyToLen intrinsic. 798 inline void multiply64(Register dest_hi, Register dest_lo, 799 Register x, Register y); 800 void add2_with_carry(Register dest_hi, Register dest_lo, 801 Register src1, Register src2); 802 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 803 Register y, Register y_idx, Register z, 804 Register carry, Register product_high, Register product, 805 Register idx, Register kdx, Register tmp); 806 void multiply_add_128_x_128(Register x_xstart, Register y, Register z, 807 Register yz_idx, Register idx, Register carry, 808 Register product_high, Register product, Register tmp, 809 int offset); 810 void multiply_128_x_128_loop(Register x_xstart, 811 Register y, Register z, 812 Register yz_idx, Register idx, Register carry, 813 Register product_high, Register product, 814 Register carry2, Register tmp); 815 void multiply_to_len(Register x, Register xlen, 816 Register y, Register ylen, 817 Register z, Register zlen, 818 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, 819 Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10, 820 Register tmp11, Register tmp12, Register tmp13); 821 822 // Emitters for CRC32 calculation. 823 // A note on invertCRC: 824 // Unfortunately, internal representation of crc differs between CRC32 and CRC32C. 825 // CRC32 holds it's current crc value in the externally visible representation. 826 // CRC32C holds it's current crc value in internal format, ready for updating. 827 // Thus, the crc value must be bit-flipped before updating it in the CRC32 case. 828 // In the CRC32C case, it must be bit-flipped when it is given to the outside world (getValue()). 829 // The bool invertCRC parameter indicates whether bit-flipping is required before updates. 830 void load_reverse_32(Register dst, Register src); 831 int crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3); 832 void fold_byte_crc32(Register crc, Register val, Register table, Register tmp); 833 void fold_8bit_crc32(Register crc, Register table, Register tmp); 834 void update_byte_crc32(Register crc, Register val, Register table); 835 void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, 836 Register data, bool loopAlignment); 837 void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc, 838 Register t0, Register t1, Register t2, Register t3, 839 Register tc0, Register tc1, Register tc2, Register tc3); 840 void kernel_crc32_2word(Register crc, Register buf, Register len, Register table, 841 Register t0, Register t1, Register t2, Register t3, 842 Register tc0, Register tc1, Register tc2, Register tc3, 843 bool invertCRC); 844 void kernel_crc32_1word(Register crc, Register buf, Register len, Register table, 845 Register t0, Register t1, Register t2, Register t3, 846 Register tc0, Register tc1, Register tc2, Register tc3, 847 bool invertCRC); 848 void kernel_crc32_1byte(Register crc, Register buf, Register len, Register table, 849 Register t0, Register t1, Register t2, Register t3, 850 bool invertCRC); 851 void kernel_crc32_1word_vpmsumd(Register crc, Register buf, Register len, Register table, 852 Register constants, Register barretConstants, 853 Register t0, Register t1, Register t2, Register t3, Register t4, 854 bool invertCRC); 855 void kernel_crc32_1word_aligned(Register crc, Register buf, Register len, 856 Register constants, Register barretConstants, 857 Register t0, Register t1, Register t2); 858 859 void kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp, 860 bool invertCRC); 861 void kernel_crc32_singleByteReg(Register crc, Register val, Register table, 862 bool invertCRC); 863 864 // 865 // Debugging 866 // 867 868 // assert on cr0 869 void asm_assert(bool check_equal, const char* msg, int id); 870 void asm_assert_eq(const char* msg, int id) { asm_assert(true, msg, id); } 871 void asm_assert_ne(const char* msg, int id) { asm_assert(false, msg, id); } 872 873 private: 874 void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base, 875 const char* msg, int id); 876 877 public: 878 879 void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg, int id) { 880 asm_assert_mems_zero(true, 8, mem_offset, mem_base, msg, id); 881 } 882 void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg, int id) { 883 asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg, id); 884 } 885 886 // Verify R16_thread contents. 887 void verify_thread(); 888 889 // Emit code to verify that reg contains a valid oop if +VerifyOops is set. 890 void verify_oop(Register reg, const char* s = "broken oop"); 891 void verify_oop_addr(RegisterOrConstant offs, Register base, const char* s = "contains broken oop"); 892 893 // TODO: verify method and klass metadata (compare against vptr?) 894 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 895 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {} 896 897 // Convenience method returning function entry. For the ELFv1 case 898 // creates function descriptor at the current address and returs 899 // the pointer to it. For the ELFv2 case returns the current address. 900 inline address function_entry(); 901 902 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 903 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 904 905 private: 906 907 enum { 908 stop_stop = 0, 909 stop_untested = 1, 910 stop_unimplemented = 2, 911 stop_shouldnotreachhere = 3, 912 stop_end = 4 913 }; 914 void stop(int type, const char* msg, int id); 915 916 public: 917 // Prints msg, dumps registers and stops execution. 918 void stop (const char* msg = "", int id = 0) { stop(stop_stop, msg, id); } 919 void untested (const char* msg = "", int id = 0) { stop(stop_untested, msg, id); } 920 void unimplemented(const char* msg = "", int id = 0) { stop(stop_unimplemented, msg, id); } 921 void should_not_reach_here() { stop(stop_shouldnotreachhere, "", -1); } 922 923 void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN; 924 }; 925 926 // class SkipIfEqualZero: 927 // 928 // Instantiating this class will result in assembly code being output that will 929 // jump around any code emitted between the creation of the instance and it's 930 // automatic destruction at the end of a scope block, depending on the value of 931 // the flag passed to the constructor, which will be checked at run-time. 932 class SkipIfEqualZero : public StackObj { 933 private: 934 MacroAssembler* _masm; 935 Label _label; 936 937 public: 938 // 'Temp' is a temp register that this object can use (and trash). 939 explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr); 940 ~SkipIfEqualZero(); 941 }; 942 943 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_HPP