1 /*
   2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
  27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "utilities/macros.hpp"
  32 
  33 // MacroAssembler extends Assembler by a few frequently used macros.
  34 
  35 class ciTypeArray;
  36 
  37 class MacroAssembler: public Assembler {
  38  public:
  39   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  40 
  41   //
  42   // Optimized instruction emitters
  43   //
  44 
  45   inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; }
  46   inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); }
  47 
  48   // load d = *[a+si31]
  49   // Emits several instructions if the offset is not encodable in one instruction.
  50   void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop);
  51   void ld_largeoffset          (Register d, int si31, Register a, int emit_filler_nop);
  52   inline static bool is_ld_largeoffset(address a);
  53   inline static int get_ld_largeoffset_offset(address a);
  54 
  55   inline void round_to(Register r, int modulus);
  56 
  57   // Load/store with type given by parameter.
  58   void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed);
  59   void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes);
  60 
  61   // Move register if destination register and target register are different
  62   inline void mr_if_needed(Register rd, Register rs);
  63   inline void fmr_if_needed(FloatRegister rd, FloatRegister rs);
  64   // This is dedicated for emitting scheduled mach nodes. For better
  65   // readability of the ad file I put it here.
  66   // Endgroups are not needed if
  67   //  - the scheduler is off
  68   //  - the scheduler found that there is a natural group end, in that
  69   //    case it reduced the size of the instruction used in the test
  70   //    yielding 'needed'.
  71   inline void endgroup_if_needed(bool needed);
  72 
  73   // Memory barriers.
  74   inline void membar(int bits);
  75   inline void release();
  76   inline void acquire();
  77   inline void fence();
  78 
  79   // nop padding
  80   void align(int modulus, int max = 252, int rem = 0);
  81 
  82   //
  83   // Constants, loading constants, TOC support
  84   //
  85 
  86   // Address of the global TOC.
  87   inline static address global_toc();
  88   // Offset of given address to the global TOC.
  89   inline static int offset_to_global_toc(const address addr);
  90 
  91   // Address of TOC of the current method.
  92   inline address method_toc();
  93   // Offset of given address to TOC of the current method.
  94   inline int offset_to_method_toc(const address addr);
  95 
  96   // Global TOC.
  97   void calculate_address_from_global_toc(Register dst, address addr,
  98                                          bool hi16 = true, bool lo16 = true,
  99                                          bool add_relocation = true, bool emit_dummy_addr = false);
 100   inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) {
 101     calculate_address_from_global_toc(dst, addr, true, false);
 102   };
 103   inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) {
 104     calculate_address_from_global_toc(dst, addr, false, true);
 105   };
 106 
 107   inline static bool is_calculate_address_from_global_toc_at(address a, address bound);
 108   static int patch_calculate_address_from_global_toc_at(address a, address addr, address bound);
 109   static address get_address_of_calculate_address_from_global_toc_at(address a, address addr);
 110 
 111 #ifdef _LP64
 112   // Patch narrow oop constant.
 113   inline static bool is_set_narrow_oop(address a, address bound);
 114   static int patch_set_narrow_oop(address a, address bound, narrowOop data);
 115   static narrowOop get_narrow_oop(address a, address bound);
 116 #endif
 117 
 118   inline static bool is_load_const_at(address a);
 119 
 120   // Emits an oop const to the constant pool, loads the constant, and
 121   // sets a relocation info with address current_pc.
 122   // Returns true if successful.
 123   bool load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size = false);
 124 
 125   static bool is_load_const_from_method_toc_at(address a);
 126   static int get_offset_of_load_const_from_method_toc_at(address a);
 127 
 128   // Get the 64 bit constant from a `load_const' sequence.
 129   static long get_const(address load_const);
 130 
 131   // Patch the 64 bit constant of a `load_const' sequence. This is a
 132   // low level procedure. It neither flushes the instruction cache nor
 133   // is it atomic.
 134   static void patch_const(address load_const, long x);
 135 
 136   // Metadata in code that we have to keep track of.
 137   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
 138   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
 139   // Oops used directly in compiled code are stored in the constant pool,
 140   // and loaded from there.
 141   // Allocate new entry for oop in constant pool. Generate relocation.
 142   AddressLiteral allocate_oop_address(jobject obj);
 143   // Find oop obj in constant pool. Return relocation with it's index.
 144   AddressLiteral constant_oop_address(jobject obj);
 145 
 146   // Find oop in constant pool and emit instructions to load it.
 147   // Uses constant_oop_address.
 148   inline void set_oop_constant(jobject obj, Register d);
 149   // Same as load_address.
 150   inline void set_oop         (AddressLiteral obj_addr, Register d);
 151 
 152   // Read runtime constant:  Issue load if constant not yet established,
 153   // else use real constant.
 154   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 155                                                 Register tmp,
 156                                                 int offset);
 157 
 158   //
 159   // branch, jump
 160   //
 161 
 162   inline void pd_patch_instruction(address branch, address target);
 163   NOT_PRODUCT(static void pd_print_patched_instruction(address branch);)
 164 
 165   // Conditional far branch for destinations encodable in 24+2 bits.
 166   // Same interface as bc, e.g. no inverse boint-field.
 167   enum {
 168     bc_far_optimize_not         = 0,
 169     bc_far_optimize_on_relocate = 1
 170   };
 171   // optimize: flag for telling the conditional far branch to optimize
 172   //           itself when relocated.
 173   void bc_far(int boint, int biint, Label& dest, int optimize);
 174   void bc_far_optimized(int boint, int biint, Label& dest); // 1 or 2 instructions
 175   // Relocation of conditional far branches.
 176   static bool    is_bc_far_at(address instruction_addr);
 177   static address get_dest_of_bc_far_at(address instruction_addr);
 178   static void    set_dest_of_bc_far_at(address instruction_addr, address dest);
 179  private:
 180   static bool inline is_bc_far_variant1_at(address instruction_addr);
 181   static bool inline is_bc_far_variant2_at(address instruction_addr);
 182   static bool inline is_bc_far_variant3_at(address instruction_addr);
 183  public:
 184 
 185   // Convenience bc_far versions.
 186   inline void blt_far(ConditionRegister crx, Label& L, int optimize);
 187   inline void bgt_far(ConditionRegister crx, Label& L, int optimize);
 188   inline void beq_far(ConditionRegister crx, Label& L, int optimize);
 189   inline void bso_far(ConditionRegister crx, Label& L, int optimize);
 190   inline void bge_far(ConditionRegister crx, Label& L, int optimize);
 191   inline void ble_far(ConditionRegister crx, Label& L, int optimize);
 192   inline void bne_far(ConditionRegister crx, Label& L, int optimize);
 193   inline void bns_far(ConditionRegister crx, Label& L, int optimize);
 194 
 195   // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump.
 196  private:
 197   enum {
 198     bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/),
 199     bxx64_patchable_size              = bxx64_patchable_instruction_count * BytesPerInstWord,
 200     bxx64_patchable_ret_addr_offset   = bxx64_patchable_size
 201   };
 202   void bxx64_patchable(address target, relocInfo::relocType rt, bool link);
 203   static bool is_bxx64_patchable_at(            address instruction_addr, bool link);
 204   // Does the instruction use a pc-relative encoding of the destination?
 205   static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link);
 206   static bool is_bxx64_patchable_variant1_at(   address instruction_addr, bool link);
 207   // Load destination relative to global toc.
 208   static bool is_bxx64_patchable_variant1b_at(  address instruction_addr, bool link);
 209   static bool is_bxx64_patchable_variant2_at(   address instruction_addr, bool link);
 210   static void set_dest_of_bxx64_patchable_at(   address instruction_addr, address target, bool link);
 211   static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link);
 212 
 213  public:
 214   // call
 215   enum {
 216     bl64_patchable_instruction_count = bxx64_patchable_instruction_count,
 217     bl64_patchable_size              = bxx64_patchable_size,
 218     bl64_patchable_ret_addr_offset   = bxx64_patchable_ret_addr_offset
 219   };
 220   inline void bl64_patchable(address target, relocInfo::relocType rt) {
 221     bxx64_patchable(target, rt, /*link=*/true);
 222   }
 223   inline static bool is_bl64_patchable_at(address instruction_addr) {
 224     return is_bxx64_patchable_at(instruction_addr, /*link=*/true);
 225   }
 226   inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) {
 227     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true);
 228   }
 229   inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) {
 230     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true);
 231   }
 232   inline static address get_dest_of_bl64_patchable_at(address instruction_addr) {
 233     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true);
 234   }
 235   // jump
 236   enum {
 237     b64_patchable_instruction_count = bxx64_patchable_instruction_count,
 238     b64_patchable_size              = bxx64_patchable_size,
 239   };
 240   inline void b64_patchable(address target, relocInfo::relocType rt) {
 241     bxx64_patchable(target, rt, /*link=*/false);
 242   }
 243   inline static bool is_b64_patchable_at(address instruction_addr) {
 244     return is_bxx64_patchable_at(instruction_addr, /*link=*/false);
 245   }
 246   inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) {
 247     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false);
 248   }
 249   inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) {
 250     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false);
 251   }
 252   inline static address get_dest_of_b64_patchable_at(address instruction_addr) {
 253     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false);
 254   }
 255 
 256   //
 257   // Support for frame handling
 258   //
 259 
 260   // some ABI-related functions
 261   void save_nonvolatile_gprs(   Register dst_base, int offset);
 262   void restore_nonvolatile_gprs(Register src_base, int offset);
 263   enum { num_volatile_regs = 11 + 14 }; // GPR + FPR
 264   void save_volatile_gprs(   Register dst_base, int offset);
 265   void restore_volatile_gprs(Register src_base, int offset);
 266   void save_LR_CR(   Register tmp);     // tmp contains LR on return.
 267   void restore_LR_CR(Register tmp);
 268 
 269   // Get current PC using bl-next-instruction trick.
 270   address get_PC_trash_LR(Register result);
 271 
 272   // Resize current frame either relatively wrt to current SP or absolute.
 273   void resize_frame(Register offset, Register tmp);
 274   void resize_frame(int      offset, Register tmp);
 275   void resize_frame_absolute(Register addr, Register tmp1, Register tmp2);
 276 
 277   // Push a frame of size bytes.
 278   void push_frame(Register bytes, Register tmp);
 279 
 280   // Push a frame of size `bytes'. No abi space provided.
 281   void push_frame(unsigned int bytes, Register tmp);
 282 
 283   // Push a frame of size `bytes' plus abi_reg_args on top.
 284   void push_frame_reg_args(unsigned int bytes, Register tmp);
 285 
 286   // Setup up a new C frame with a spill area for non-volatile GPRs and additional
 287   // space for local variables
 288   void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp);
 289 
 290   // pop current C frame
 291   void pop_frame();
 292 
 293   //
 294   // Calls
 295   //
 296 
 297  private:
 298   address _last_calls_return_pc;
 299 
 300 #if defined(ABI_ELFv2)
 301   // Generic version of a call to C function.
 302   // Updates and returns _last_calls_return_pc.
 303   address branch_to(Register function_entry, bool and_link);
 304 #else
 305   // Generic version of a call to C function via a function descriptor
 306   // with variable support for C calling conventions (TOC, ENV, etc.).
 307   // updates and returns _last_calls_return_pc.
 308   address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
 309                     bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
 310 #endif
 311 
 312  public:
 313 
 314   // Get the pc where the last call will return to. returns _last_calls_return_pc.
 315   inline address last_calls_return_pc();
 316 
 317 #if defined(ABI_ELFv2)
 318   // Call a C function via a function descriptor and use full C
 319   // calling conventions. Updates and returns _last_calls_return_pc.
 320   address call_c(Register function_entry);
 321   // For tail calls: only branch, don't link, so callee returns to caller of this function.
 322   address call_c_and_return_to_caller(Register function_entry);
 323   address call_c(address function_entry, relocInfo::relocType rt);
 324 #else
 325   // Call a C function via a function descriptor and use full C
 326   // calling conventions. Updates and returns _last_calls_return_pc.
 327   address call_c(Register function_descriptor);
 328   // For tail calls: only branch, don't link, so callee returns to caller of this function.
 329   address call_c_and_return_to_caller(Register function_descriptor);
 330   address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
 331   address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
 332                            Register toc);
 333 #endif
 334 
 335  protected:
 336 
 337   // It is imperative that all calls into the VM are handled via the
 338   // call_VM macros. They make sure that the stack linkage is setup
 339   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
 340   // while call_VM_leaf's correspond to LEAF entry points.
 341   //
 342   // This is the base routine called by the different versions of
 343   // call_VM. The interpreter may customize this version by overriding
 344   // it for its purposes (e.g., to save/restore additional registers
 345   // when doing a VM call).
 346   //
 347   // If no last_java_sp is specified (noreg) then SP will be used instead.
 348   virtual void call_VM_base(
 349      // where an oop-result ends up if any; use noreg otherwise
 350     Register        oop_result,
 351     // to set up last_Java_frame in stubs; use noreg otherwise
 352     Register        last_java_sp,
 353     // the entry point
 354     address         entry_point,
 355     // flag which indicates if exception should be checked
 356     bool            check_exception = true
 357   );
 358 
 359   // Support for VM calls. This is the base routine called by the
 360   // different versions of call_VM_leaf. The interpreter may customize
 361   // this version by overriding it for its purposes (e.g., to
 362   // save/restore additional registers when doing a VM call).
 363   void call_VM_leaf_base(address entry_point);
 364 
 365  public:
 366   // Call into the VM.
 367   // Passes the thread pointer (in R3_ARG1) as a prepended argument.
 368   // Makes sure oop return values are visible to the GC.
 369   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
 370   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
 371   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 372   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true);
 373   void call_VM_leaf(address entry_point);
 374   void call_VM_leaf(address entry_point, Register arg_1);
 375   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 376   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 377 
 378   // Call a stub function via a function descriptor, but don't save
 379   // TOC before call, don't setup TOC and ENV for call, and don't
 380   // restore TOC after call. Updates and returns _last_calls_return_pc.
 381   inline address call_stub(Register function_entry);
 382   inline void call_stub_and_return_to(Register function_entry, Register return_pc);
 383 
 384   //
 385   // Java utilities
 386   //
 387 
 388   // Read from the polling page, its address is already in a register.
 389   inline void load_from_polling_page(Register polling_page_address, int offset = 0);
 390   // Check whether instruction is a read access to the polling page
 391   // which was emitted by load_from_polling_page(..).
 392   static bool is_load_from_polling_page(int instruction, void* ucontext/*may be NULL*/,
 393                                         address* polling_address_ptr = NULL);
 394 
 395   // Check whether instruction is a write access to the memory
 396   // serialization page realized by one of the instructions stw, stwu,
 397   // stwx, or stwux.
 398   static bool is_memory_serialization(int instruction, JavaThread* thread, void* ucontext);
 399 
 400   // Support for NULL-checks
 401   //
 402   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 403   // If the accessed location is M[reg + offset] and the offset is known, provide the
 404   // offset. No explicit code generation is needed if the offset is within a certain
 405   // range (0 <= offset <= page_size).
 406 
 407   // Stack overflow checking
 408   void bang_stack_with_offset(int offset);
 409 
 410   // If instruction is a stack bang of the form ld, stdu, or
 411   // stdux, return the banged address. Otherwise, return 0.
 412   static address get_stack_bang_address(int instruction, void* ucontext);
 413 
 414   // Check for reserved stack access in method being exited. If the reserved
 415   // stack area was accessed, protect it again and throw StackOverflowError.
 416   void reserved_stack_check(Register return_pc);
 417 
 418   // Atomics
 419   // CmpxchgX sets condition register to cmpX(current, compare).
 420   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
 421   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
 422   static inline bool cmpxchgx_hint_acquire_lock()  { return true; }
 423   // The stxcx will probably not be succeeded by a releasing store.
 424   static inline bool cmpxchgx_hint_release_lock()  { return false; }
 425   static inline bool cmpxchgx_hint_atomic_update() { return false; }
 426 
 427   // Cmpxchg semantics
 428   enum {
 429     MemBarNone = 0,
 430     MemBarRel  = 1,
 431     MemBarAcq  = 2,
 432     MemBarFenceAfter = 4 // use powers of 2
 433   };
 434  private:
 435   // Helper functions for word/sub-word atomics.
 436   void atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
 437                                      Register addr_base, Register tmp1, Register tmp2, Register tmp3,
 438                                      bool cmpxchgx_hint, bool is_add, int size);
 439   void cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
 440                          Register compare_value, Register exchange_value,
 441                          Register addr_base, Register tmp1, Register tmp2,
 442                          Label &retry, Label &failed, bool cmpxchgx_hint, int size);
 443   void cmpxchg_generic(ConditionRegister flag,
 444                        Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 445                        Register tmp1, Register tmp2,
 446                        int semantics, bool cmpxchgx_hint, Register int_flag_success, bool contention_hint, bool weak, int size);
 447  public:
 448   // Temps and addr_base are killed if processor does not support Power 8 instructions.
 449   // Result will be sign extended.
 450   void getandsetb(Register dest_current_value, Register exchange_value, Register addr_base,
 451                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
 452     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 1);
 453   }
 454   // Temps and addr_base are killed if processor does not support Power 8 instructions.
 455   // Result will be sign extended.
 456   void getandseth(Register dest_current_value, Register exchange_value, Register addr_base,
 457                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
 458     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 2);
 459   }
 460   void getandsetw(Register dest_current_value, Register exchange_value, Register addr_base,
 461                   bool cmpxchgx_hint) {
 462     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, noreg, noreg, noreg, cmpxchgx_hint, false, 4);
 463   }
 464   void getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
 465                   bool cmpxchgx_hint);
 466   // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed).
 467   // Result will be sign extended.
 468   void getandaddb(Register dest_current_value, Register inc_value, Register addr_base,
 469                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
 470     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 1);
 471   }
 472   // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed).
 473   // Result will be sign extended.
 474   void getandaddh(Register dest_current_value, Register inc_value, Register addr_base,
 475                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
 476     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 2);
 477   }
 478   void getandaddw(Register dest_current_value, Register inc_value, Register addr_base,
 479                   Register tmp1, bool cmpxchgx_hint) {
 480     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, noreg, noreg, cmpxchgx_hint, true, 4);
 481   }
 482   void getandaddd(Register dest_current_value, Register exchange_value, Register addr_base,
 483                   Register tmp, bool cmpxchgx_hint);
 484   // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions.
 485   // compare_value must be at least 32 bit sign extended. Result will be sign extended.
 486   void cmpxchgb(ConditionRegister flag,
 487                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 488                 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false,
 489                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
 490     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
 491                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 1);
 492   }
 493   // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions.
 494   // compare_value must be at least 32 bit sign extended. Result will be sign extended.
 495   void cmpxchgh(ConditionRegister flag,
 496                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 497                 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false,
 498                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
 499     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
 500                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 2);
 501   }
 502   void cmpxchgw(ConditionRegister flag,
 503                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 504                 int semantics, bool cmpxchgx_hint = false,
 505                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
 506     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, noreg, noreg,
 507                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 4);
 508   }
 509   void cmpxchgd(ConditionRegister flag,
 510                 Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
 511                 Register addr_base, int semantics, bool cmpxchgx_hint = false,
 512                 Register int_flag_success = noreg, Label* failed = NULL, bool contention_hint = false, bool weak = false);
 513 
 514   // interface method calling
 515   void lookup_interface_method(Register recv_klass,
 516                                Register intf_klass,
 517                                RegisterOrConstant itable_index,
 518                                Register method_result,
 519                                Register temp_reg, Register temp2_reg,
 520                                Label& no_such_interface);
 521 
 522   // virtual method calling
 523   void lookup_virtual_method(Register recv_klass,
 524                              RegisterOrConstant vtable_index,
 525                              Register method_result);
 526 
 527   // Test sub_klass against super_klass, with fast and slow paths.
 528 
 529   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 530   // One of the three labels can be NULL, meaning take the fall-through.
 531   // If super_check_offset is -1, the value is loaded up from super_klass.
 532   // No registers are killed, except temp_reg and temp2_reg.
 533   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
 534   void check_klass_subtype_fast_path(Register sub_klass,
 535                                      Register super_klass,
 536                                      Register temp1_reg,
 537                                      Register temp2_reg,
 538                                      Label* L_success,
 539                                      Label* L_failure,
 540                                      Label* L_slow_path = NULL, // default fall through
 541                                      RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 542 
 543   // The rest of the type check; must be wired to a corresponding fast path.
 544   // It does not repeat the fast path logic, so don't use it standalone.
 545   // The temp_reg can be noreg, if no temps are available.
 546   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
 547   // Updates the sub's secondary super cache as necessary.
 548   void check_klass_subtype_slow_path(Register sub_klass,
 549                                      Register super_klass,
 550                                      Register temp1_reg,
 551                                      Register temp2_reg,
 552                                      Label* L_success = NULL,
 553                                      Register result_reg = noreg);
 554 
 555   // Simplified, combined version, good for typical uses.
 556   // Falls through on failure.
 557   void check_klass_subtype(Register sub_klass,
 558                            Register super_klass,
 559                            Register temp1_reg,
 560                            Register temp2_reg,
 561                            Label& L_success);
 562 
 563   // Method handle support (JSR 292).
 564   void check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type);
 565 
 566   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0);
 567 
 568   // Biased locking support
 569   // Upon entry,obj_reg must contain the target object, and mark_reg
 570   // must contain the target object's header.
 571   // Destroys mark_reg if an attempt is made to bias an anonymously
 572   // biased lock. In this case a failure will go either to the slow
 573   // case or fall through with the notEqual condition code set with
 574   // the expectation that the slow case in the runtime will be called.
 575   // In the fall-through case where the CAS-based lock is done,
 576   // mark_reg is not destroyed.
 577   void biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg,
 578                             Register temp2_reg, Label& done, Label* slow_case = NULL);
 579   // Upon entry, the base register of mark_addr must contain the oop.
 580   // Destroys temp_reg.
 581   // If allow_delay_slot_filling is set to true, the next instruction
 582   // emitted after this one will go in an annulled delay slot if the
 583   // biased locking exit case failed.
 584   void biased_locking_exit(ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done);
 585 
 586   // allocation (for C1)
 587   void eden_allocate(
 588     Register obj,                      // result: pointer to object after successful allocation
 589     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 590     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 591     Register t1,                       // temp register
 592     Register t2,                       // temp register
 593     Label&   slow_case                 // continuation point if fast allocation fails
 594   );
 595   void tlab_allocate(
 596     Register obj,                      // result: pointer to object after successful allocation
 597     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 598     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 599     Register t1,                       // temp register
 600     Label&   slow_case                 // continuation point if fast allocation fails
 601   );
 602   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
 603   void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2);
 604 
 605   enum { trampoline_stub_size = 6 * 4 };
 606   address emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc = noreg);
 607 
 608   void atomic_inc_ptr(Register addr, Register result, int simm16 = 1);
 609   void atomic_ori_int(Register addr, Register result, int uimm16);
 610 
 611 #if INCLUDE_RTM_OPT
 612   void rtm_counters_update(Register abort_status, Register rtm_counters);
 613   void branch_on_random_using_tb(Register tmp, int count, Label& brLabel);
 614   void rtm_abort_ratio_calculation(Register rtm_counters_reg, RTMLockingCounters* rtm_counters,
 615                                    Metadata* method_data);
 616   void rtm_profiling(Register abort_status_Reg, Register temp_Reg,
 617                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 618   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status,
 619                                Label& retryLabel, Label* checkRetry = NULL);
 620   void rtm_retry_lock_on_busy(Register retry_count, Register owner_addr, Label& retryLabel);
 621   void rtm_stack_locking(ConditionRegister flag, Register obj, Register mark_word, Register tmp,
 622                          Register retry_on_abort_count,
 623                          RTMLockingCounters* stack_rtm_counters,
 624                          Metadata* method_data, bool profile_rtm,
 625                          Label& DONE_LABEL, Label& IsInflated);
 626   void rtm_inflated_locking(ConditionRegister flag, Register obj, Register mark_word, Register box,
 627                             Register retry_on_busy_count, Register retry_on_abort_count,
 628                             RTMLockingCounters* rtm_counters,
 629                             Metadata* method_data, bool profile_rtm,
 630                             Label& DONE_LABEL);
 631 #endif
 632 
 633   void compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
 634                                  Register tmp1, Register tmp2, Register tmp3,
 635                                  bool try_bias = UseBiasedLocking,
 636                                  RTMLockingCounters* rtm_counters = NULL,
 637                                  RTMLockingCounters* stack_rtm_counters = NULL,
 638                                  Metadata* method_data = NULL,
 639                                  bool use_rtm = false, bool profile_rtm = false);
 640 
 641   void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
 642                                    Register tmp1, Register tmp2, Register tmp3,
 643                                    bool try_bias = UseBiasedLocking, bool use_rtm = false);
 644 
 645   // Support for serializing memory accesses between threads
 646   void serialize_memory(Register thread, Register tmp1, Register tmp2);
 647 
 648   // GC barrier support.
 649   void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp);
 650   void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj);
 651 
 652   void resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame);
 653 
 654 #if INCLUDE_ALL_GCS
 655   // General G1 pre-barrier generator.
 656   void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
 657                             Register Rtmp1, Register Rtmp2, bool needs_frame = false);
 658   // General G1 post-barrier generator
 659   void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1,
 660                              Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL);
 661 #endif
 662 
 663   // Support for managing the JavaThread pointer (i.e.; the reference to
 664   // thread-local information).
 665 
 666   // Support for last Java frame (but use call_VM instead where possible):
 667   // access R16_thread->last_Java_sp.
 668   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
 669   void reset_last_Java_frame(void);
 670   void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
 671 
 672   // Read vm result from thread: oop_result = R16_thread->result;
 673   void get_vm_result  (Register oop_result);
 674   void get_vm_result_2(Register metadata_result);
 675 
 676   static bool needs_explicit_null_check(intptr_t offset);
 677 
 678   // Trap-instruction-based checks.
 679   // Range checks can be distinguished from zero checks as they check 32 bit,
 680   // zero checks all 64 bits (tw, td).
 681   inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual);
 682   static bool is_trap_null_check(int x) {
 683     return is_tdi(x, traptoEqual,               -1/*any reg*/, 0) ||
 684            is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0);
 685   }
 686 
 687   inline void trap_zombie_not_entrant();
 688   static bool is_trap_zombie_not_entrant(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 1); }
 689 
 690   inline void trap_should_not_reach_here();
 691   static bool is_trap_should_not_reach_here(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 2); }
 692 
 693   inline void trap_ic_miss_check(Register a, Register b);
 694   static bool is_trap_ic_miss_check(int x) {
 695     return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/);
 696   }
 697 
 698   // Implicit or explicit null check, jumps to static address exception_entry.
 699   inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry);
 700   inline void null_check(Register a, int offset, Label *Lis_null); // implicit only if Lis_null not provided
 701 
 702   // Load heap oop and decompress. Loaded oop may not be null.
 703   // Specify tmp to save one cycle.
 704   inline void load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1 = noreg,
 705                                      Register tmp = noreg);
 706   // Store heap oop and decompress.  Decompressed oop may not be null.
 707   // Specify tmp register if d should not be changed.
 708   inline void store_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1,
 709                                       Register tmp = noreg);
 710 
 711   // Null allowed.
 712   inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1 = noreg, Label *is_null = NULL);
 713 
 714   // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong.
 715   // src == d allowed.
 716   inline Register encode_heap_oop_not_null(Register d, Register src = noreg);
 717   inline Register decode_heap_oop_not_null(Register d, Register src = noreg);
 718 
 719   // Null allowed.
 720   inline Register encode_heap_oop(Register d, Register src); // Prefer null check in GC barrier!
 721   inline void decode_heap_oop(Register d);
 722 
 723   // Load/Store klass oop from klass field. Compress.
 724   void load_klass(Register dst, Register src);
 725   void store_klass(Register dst_oop, Register klass, Register tmp = R0);
 726   void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified.
 727 
 728   void load_mirror_from_const_method(Register mirror, Register const_method);
 729 
 730   static int instr_size_for_decode_klass_not_null();
 731   void decode_klass_not_null(Register dst, Register src = noreg);
 732   Register encode_klass_not_null(Register dst, Register src = noreg);
 733 
 734   // SIGTRAP-based range checks for arrays.
 735   inline void trap_range_check_l(Register a, Register b);
 736   inline void trap_range_check_l(Register a, int si16);
 737   static bool is_trap_range_check_l(int x) {
 738     return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
 739             is_twi(x, traptoLessThanUnsigned, -1/*any reg*/)                  );
 740   }
 741   inline void trap_range_check_le(Register a, int si16);
 742   static bool is_trap_range_check_le(int x) {
 743     return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/);
 744   }
 745   inline void trap_range_check_g(Register a, int si16);
 746   static bool is_trap_range_check_g(int x) {
 747     return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/);
 748   }
 749   inline void trap_range_check_ge(Register a, Register b);
 750   inline void trap_range_check_ge(Register a, int si16);
 751   static bool is_trap_range_check_ge(int x) {
 752     return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
 753             is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/)                  );
 754   }
 755   static bool is_trap_range_check(int x) {
 756     return is_trap_range_check_l(x) || is_trap_range_check_le(x) ||
 757            is_trap_range_check_g(x) || is_trap_range_check_ge(x);
 758   }
 759 
 760   void clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp = R0, int offset = 0);
 761   void clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp = R0);
 762   void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0, long const_cnt = -1);
 763 
 764 #ifdef COMPILER2
 765   // Intrinsics for CompactStrings
 766   // Compress char[] to byte[] by compressing 16 bytes at once.
 767   void string_compress_16(Register src, Register dst, Register cnt,
 768                           Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
 769                           Label& Lfailure);
 770 
 771   // Compress char[] to byte[]. cnt must be positive int.
 772   void string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure);
 773 
 774   // Inflate byte[] to char[] by inflating 16 bytes at once.
 775   void string_inflate_16(Register src, Register dst, Register cnt,
 776                          Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
 777 
 778   // Inflate byte[] to char[]. cnt must be positive int.
 779   void string_inflate(Register src, Register dst, Register cnt, Register tmp);
 780 
 781   void string_compare(Register str1, Register str2, Register cnt1, Register cnt2,
 782                       Register tmp1, Register result, int ae);
 783 
 784   void array_equals(bool is_array_equ, Register ary1, Register ary2,
 785                     Register limit, Register tmp1, Register result, bool is_byte);
 786 
 787   void string_indexof(Register result, Register haystack, Register haycnt,
 788                       Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
 789                       Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae);
 790 
 791   void string_indexof_char(Register result, Register haystack, Register haycnt,
 792                            Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte);
 793 
 794   void has_negatives(Register src, Register cnt, Register result, Register tmp1, Register tmp2);
 795 #endif
 796 
 797   // Emitters for BigInteger.multiplyToLen intrinsic.
 798   inline void multiply64(Register dest_hi, Register dest_lo,
 799                          Register x, Register y);
 800   void add2_with_carry(Register dest_hi, Register dest_lo,
 801                        Register src1, Register src2);
 802   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 803                              Register y, Register y_idx, Register z,
 804                              Register carry, Register product_high, Register product,
 805                              Register idx, Register kdx, Register tmp);
 806   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 807                               Register yz_idx, Register idx, Register carry,
 808                               Register product_high, Register product, Register tmp,
 809                               int offset);
 810   void multiply_128_x_128_loop(Register x_xstart,
 811                                Register y, Register z,
 812                                Register yz_idx, Register idx, Register carry,
 813                                Register product_high, Register product,
 814                                Register carry2, Register tmp);
 815   void multiply_to_len(Register x, Register xlen,
 816                        Register y, Register ylen,
 817                        Register z, Register zlen,
 818                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
 819                        Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10,
 820                        Register tmp11, Register tmp12, Register tmp13);
 821 
 822   // Emitters for CRC32 calculation.
 823   // A note on invertCRC:
 824   //   Unfortunately, internal representation of crc differs between CRC32 and CRC32C.
 825   //   CRC32 holds it's current crc value in the externally visible representation.
 826   //   CRC32C holds it's current crc value in internal format, ready for updating.
 827   //   Thus, the crc value must be bit-flipped before updating it in the CRC32 case.
 828   //   In the CRC32C case, it must be bit-flipped when it is given to the outside world (getValue()).
 829   //   The bool invertCRC parameter indicates whether bit-flipping is required before updates.
 830   void load_reverse_32(Register dst, Register src);
 831   int  crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3);
 832   void fold_byte_crc32(Register crc, Register val, Register table, Register tmp);
 833   void fold_8bit_crc32(Register crc, Register table, Register tmp);
 834   void update_byte_crc32(Register crc, Register val, Register table);
 835   void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
 836                              Register data, bool loopAlignment);
 837   void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
 838                           Register t0,  Register t1,  Register t2,  Register t3,
 839                           Register tc0, Register tc1, Register tc2, Register tc3);
 840   void kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
 841                           Register t0,  Register t1,  Register t2,  Register t3,
 842                           Register tc0, Register tc1, Register tc2, Register tc3,
 843                           bool invertCRC);
 844   void kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
 845                           Register t0,  Register t1,  Register t2,  Register t3,
 846                           Register tc0, Register tc1, Register tc2, Register tc3,
 847                           bool invertCRC);
 848   void kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
 849                           Register t0,  Register t1,  Register t2,  Register t3,
 850                           bool invertCRC);
 851   void kernel_crc32_1word_vpmsumd(Register crc, Register buf, Register len, Register table,
 852                           Register constants, Register barretConstants,
 853                           Register t0,  Register t1, Register t2, Register t3, Register t4,
 854                           bool invertCRC);
 855   void kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
 856                           Register constants, Register barretConstants,
 857                           Register t0, Register t1, Register t2);
 858 
 859   void kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
 860                                bool invertCRC);
 861   void kernel_crc32_singleByteReg(Register crc, Register val, Register table,
 862                                   bool invertCRC);
 863 
 864   //
 865   // Debugging
 866   //
 867 
 868   // assert on cr0
 869   void asm_assert(bool check_equal, const char* msg, int id);
 870   void asm_assert_eq(const char* msg, int id) { asm_assert(true, msg, id); }
 871   void asm_assert_ne(const char* msg, int id) { asm_assert(false, msg, id); }
 872 
 873  private:
 874   void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base,
 875                             const char* msg, int id);
 876 
 877  public:
 878 
 879   void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg, int id) {
 880     asm_assert_mems_zero(true,  8, mem_offset, mem_base, msg, id);
 881   }
 882   void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg, int id) {
 883     asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg, id);
 884   }
 885 
 886   // Verify R16_thread contents.
 887   void verify_thread();
 888 
 889   // Emit code to verify that reg contains a valid oop if +VerifyOops is set.
 890   void verify_oop(Register reg, const char* s = "broken oop");
 891   void verify_oop_addr(RegisterOrConstant offs, Register base, const char* s = "contains broken oop");
 892 
 893   // TODO: verify method and klass metadata (compare against vptr?)
 894   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 895   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
 896 
 897   // Convenience method returning function entry. For the ELFv1 case
 898   // creates function descriptor at the current address and returs
 899   // the pointer to it. For the ELFv2 case returns the current address.
 900   inline address function_entry();
 901 
 902 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 903 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 904 
 905  private:
 906 
 907   enum {
 908     stop_stop                = 0,
 909     stop_untested            = 1,
 910     stop_unimplemented       = 2,
 911     stop_shouldnotreachhere  = 3,
 912     stop_end                 = 4
 913   };
 914   void stop(int type, const char* msg, int id);
 915 
 916  public:
 917   // Prints msg, dumps registers and stops execution.
 918   void stop         (const char* msg = "", int id = 0) { stop(stop_stop,               msg, id); }
 919   void untested     (const char* msg = "", int id = 0) { stop(stop_untested,           msg, id); }
 920   void unimplemented(const char* msg = "", int id = 0) { stop(stop_unimplemented,      msg, id); }
 921   void should_not_reach_here()                         { stop(stop_shouldnotreachhere,  "", -1); }
 922 
 923   void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN;
 924 };
 925 
 926 // class SkipIfEqualZero:
 927 //
 928 // Instantiating this class will result in assembly code being output that will
 929 // jump around any code emitted between the creation of the instance and it's
 930 // automatic destruction at the end of a scope block, depending on the value of
 931 // the flag passed to the constructor, which will be checked at run-time.
 932 class SkipIfEqualZero : public StackObj {
 933  private:
 934   MacroAssembler* _masm;
 935   Label _label;
 936 
 937  public:
 938    // 'Temp' is a temp register that this object can use (and trash).
 939    explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr);
 940    ~SkipIfEqualZero();
 941 };
 942 
 943 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_HPP